sampling : optimize dist sampler (#15704)

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-09-03 18:16:26 +03:00
committed by GitHub
parent 2c8dac72eb
commit cdedb70a99

View File

@@ -604,10 +604,73 @@ static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*
static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_dist *) smpl->ctx; auto * ctx = (llama_sampler_dist *) smpl->ctx;
// sorting is not necessary here // edge cases
llama_sampler_softmax_impl(cur_p, false); if (cur_p->size == 0) {
cur_p->selected = -1;
return;
}
cur_p->selected = 0;
if (cur_p->size == 1) {
cur_p->data[0].p = 1.0f;
return;
}
// max logit for numerical stability
float max_l = cur_p->data[0].logit;
if (!cur_p->sorted) {
for (size_t i = 1; i < cur_p->size; ++i) {
max_l = std::max(max_l, cur_p->data[i].logit);
}
}
// apply softmax to obtain the probabilities
double sum_cum = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
float p = expf(cur_p->data[i].logit - max_l);
cur_p->data[i].p = p;
sum_cum += p;
}
#if 1
// sample from the obtained probabilities and normalize the probs in a single pass
// this is ~3x faster on Mac with full gpt-oss vocab than the version below
//
std::uniform_real_distribution<double> dist(0.0f, 1.0f);
const double rnd = dist(ctx->rng);
double sum_run = 0.0f;
const double sum_tgt = sum_cum*rnd;
bool found = false;
for (size_t i = 0; i < cur_p->size; ++i) {
if (!found) {
// accumulate probs until we reach the target sum
sum_run += cur_p->data[i].p;
if (sum_run >= sum_tgt) {
cur_p->selected = i;
found = true;
}
}
// normalize probs
cur_p->data[i].p /= sum_cum;
}
// fallback to the last token (don't think this can happen)
assert(found);
if (!found) {
cur_p->selected = cur_p->size - 1;
}
#else
// for clarity, this is the same as above but does one pass for normalization and one extra pass for sampling
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].p /= sum_cum;
}
cur_p->selected = llama_sample_dist(cur_p, ctx->rng); cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
#endif
} }
static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) { static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) {