mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-29 08:41:22 +00:00
CUDA: add conv2d (#15635)
* CUDA: add conv2d * CUDA: conv2d - correct formatting and added const
This commit is contained in:
171
ggml/src/ggml-cuda/conv2d.cu
Normal file
171
ggml/src/ggml-cuda/conv2d.cu
Normal file
@@ -0,0 +1,171 @@
|
|||||||
|
#include "conv2d.cuh"
|
||||||
|
|
||||||
|
struct conv_params {
|
||||||
|
const int64_t IW, IH;
|
||||||
|
const int64_t OW, OH;
|
||||||
|
const int64_t KW, KH;
|
||||||
|
const int64_t ST_X, ST_Y;
|
||||||
|
const int64_t PD_X, PD_Y;
|
||||||
|
const int64_t DL_X, DL_Y;
|
||||||
|
const int64_t IC, OC;
|
||||||
|
const int64_t B;
|
||||||
|
const int64_t TOTAL;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct kernel_bounds {
|
||||||
|
int64_t y_min, y_max;
|
||||||
|
int64_t x_min, x_max;
|
||||||
|
};
|
||||||
|
|
||||||
|
__device__ __forceinline__ int64_t max64(int64_t a, int64_t b) {
|
||||||
|
return (a > b) ? a : b;
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ __forceinline__ int64_t min64(int64_t a, int64_t b) {
|
||||||
|
return (a < b) ? a : b;
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int64_t out_x, int64_t out_y, const conv_params & P) {
|
||||||
|
kernel_bounds bounds;
|
||||||
|
bounds.y_min = max64(0, (P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
|
||||||
|
bounds.y_max = min64(P.KH, (P.IH + P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
|
||||||
|
bounds.x_min = max64(0, (P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
|
||||||
|
bounds.x_max = min64(P.KW, (P.IW + P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
|
||||||
|
return bounds;
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ __forceinline__ int calculate_input_coord(int64_t out_coord,
|
||||||
|
int64_t kern_coord,
|
||||||
|
int64_t stride,
|
||||||
|
int64_t dilation,
|
||||||
|
int64_t padding) {
|
||||||
|
return out_coord * stride + kern_coord * dilation - padding;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct whcn_layout {
|
||||||
|
__device__ static int64_t input_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
|
||||||
|
return n * (P.IC * P.IW * P.IH) + c * P.IW * P.IH + y * P.IW + x;
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ static int64_t kernel_index(int64_t c_out, int64_t c_in, int64_t ky, int64_t kx, const conv_params & P) {
|
||||||
|
return c_out * (P.IC * P.KH * P.KW) + c_in * (P.KH * P.KW) + ky * P.KW + kx;
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ static int64_t output_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
|
||||||
|
return n * (P.OC * P.OW * P.OH) + c * P.OW * P.OH + y * P.OW + x;
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ static void unpack_indices(int64_t global_idx,
|
||||||
|
const conv_params & P,
|
||||||
|
int64_t & n,
|
||||||
|
int64_t & c,
|
||||||
|
int64_t & out_y,
|
||||||
|
int64_t & out_x) {
|
||||||
|
out_x = global_idx % P.OW;
|
||||||
|
out_y = (global_idx / P.OW) % P.OH;
|
||||||
|
c = (global_idx / (P.OW * P.OH)) % P.OC;
|
||||||
|
n = global_idx / (P.OW * P.OH * P.OC);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T, typename Layout>
|
||||||
|
static __global__ void conv2d_kernel(const float * __restrict__ input,
|
||||||
|
const T * __restrict__ kernel,
|
||||||
|
float * __restrict__ output,
|
||||||
|
const conv_params P) {
|
||||||
|
const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (global_idx >= P.TOTAL) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int64_t n, c_out, out_y, out_x;
|
||||||
|
Layout::unpack_indices(global_idx, P, n, c_out, out_y, out_x);
|
||||||
|
|
||||||
|
T acc = 0;
|
||||||
|
|
||||||
|
for (int64_t c_in = 0; c_in < P.IC; ++c_in) {
|
||||||
|
kernel_bounds bounds = calculate_kernel_bounds(out_x, out_y, P);
|
||||||
|
|
||||||
|
for (int64_t ky = bounds.y_min; ky < bounds.y_max; ++ky) {
|
||||||
|
const int64_t in_y = calculate_input_coord(out_y, ky, P.ST_Y, P.DL_Y, P.PD_Y);
|
||||||
|
|
||||||
|
for (int64_t kx = bounds.x_min; kx < bounds.x_max; ++kx) {
|
||||||
|
const int64_t in_x = calculate_input_coord(out_x, kx, P.ST_X, P.DL_X, P.PD_X);
|
||||||
|
|
||||||
|
T input_val;
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
input_val = __float2half(input[Layout::input_index(n, c_in, in_y, in_x, P)]);
|
||||||
|
} else {
|
||||||
|
input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)];
|
||||||
|
}
|
||||||
|
|
||||||
|
T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)];
|
||||||
|
acc += (input_val * kernel_val);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// [N, OC, OH, OW]
|
||||||
|
output[Layout::output_index(n, c_out, out_y, out_x, P)] = (float) acc;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static void conv2d_cuda(const float * X_D, const T * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
|
||||||
|
const int blocks = (P.TOTAL + CUDA_CONV2D_BLOCK_SIZE - 1) / CUDA_CONV2D_BLOCK_SIZE;
|
||||||
|
conv2d_kernel<T, whcn_layout><<<blocks, CUDA_CONV2D_BLOCK_SIZE, 0, st>>>(X_D, K_D, Y_D, P);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void conv2d_cuda_f16(const float * X_D, const half * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
|
||||||
|
conv2d_cuda<half>(X_D, K_D, Y_D, P, st);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void conv2d_cuda_f32(const float * X_D, const float * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
|
||||||
|
conv2d_cuda<float>(X_D, K_D, Y_D, P, st);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * kernel = dst->src[0];
|
||||||
|
const ggml_tensor * input = dst->src[1];
|
||||||
|
float * K_D = (float *) kernel->data;
|
||||||
|
const float * X_D = (const float *) input->data;
|
||||||
|
float * Y_D = (float *) dst->data;
|
||||||
|
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(kernel));
|
||||||
|
GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
// same number of input channels
|
||||||
|
GGML_ASSERT(input->ne[2] == kernel->ne[2]);
|
||||||
|
|
||||||
|
cudaStream_t st = ctx.stream();
|
||||||
|
|
||||||
|
const int32_t * p = (const int32_t *) dst->op_params;
|
||||||
|
const int ST_X = p[0]; // stride_x
|
||||||
|
const int ST_Y = p[1]; // stride_y
|
||||||
|
const int PD_X = p[2]; // padding_x
|
||||||
|
const int PD_Y = p[3]; // padding_y
|
||||||
|
const int DL_X = p[4]; // dilation_x
|
||||||
|
const int DL_Y = p[5]; // dilation_y
|
||||||
|
|
||||||
|
// No cwhn
|
||||||
|
GGML_ASSERT(p[6] == false);
|
||||||
|
|
||||||
|
const int IW = input->ne[0]; // input_w
|
||||||
|
const int IH = input->ne[1]; // input_h
|
||||||
|
const int OW = dst->ne[0]; // output_w
|
||||||
|
const int OH = dst->ne[1]; // output_h
|
||||||
|
const int KW = kernel->ne[0]; // kernel_w
|
||||||
|
const int KH = kernel->ne[1]; // kernel_h
|
||||||
|
const int IC = input->ne[2]; // input_channels
|
||||||
|
const int OC = kernel->ne[3]; // ouptut_chanles
|
||||||
|
const int B = input->ne[3]; // n_batches
|
||||||
|
|
||||||
|
const int64_t total = B * OC * OH * OW;
|
||||||
|
conv_params params = { IW, IH, OW, OH, KW, KH, ST_X, ST_Y, PD_X, PD_Y, DL_X, DL_Y, IC, OC, B, total };
|
||||||
|
|
||||||
|
if (kernel->type == GGML_TYPE_F16) {
|
||||||
|
conv2d_cuda_f16(X_D, (half *) K_D, Y_D, params, st);
|
||||||
|
} else {
|
||||||
|
conv2d_cuda_f32(X_D, K_D, Y_D, params, st);
|
||||||
|
}
|
||||||
|
}
|
||||||
5
ggml/src/ggml-cuda/conv2d.cuh
Normal file
5
ggml/src/ggml-cuda/conv2d.cuh
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
#pragma once
|
||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#define CUDA_CONV2D_BLOCK_SIZE 256
|
||||||
|
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
@@ -12,6 +12,7 @@
|
|||||||
#include "ggml-cuda/clamp.cuh"
|
#include "ggml-cuda/clamp.cuh"
|
||||||
#include "ggml-cuda/concat.cuh"
|
#include "ggml-cuda/concat.cuh"
|
||||||
#include "ggml-cuda/conv-transpose-1d.cuh"
|
#include "ggml-cuda/conv-transpose-1d.cuh"
|
||||||
|
#include "ggml-cuda/conv2d.cuh"
|
||||||
#include "ggml-cuda/conv2d-dw.cuh"
|
#include "ggml-cuda/conv2d-dw.cuh"
|
||||||
#include "ggml-cuda/conv2d-transpose.cuh"
|
#include "ggml-cuda/conv2d-transpose.cuh"
|
||||||
#include "ggml-cuda/convert.cuh"
|
#include "ggml-cuda/convert.cuh"
|
||||||
@@ -2451,6 +2452,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
ggml_cuda_op_im2col(ctx, dst);
|
ggml_cuda_op_im2col(ctx, dst);
|
||||||
break;
|
break;
|
||||||
|
case GGML_OP_CONV_2D:
|
||||||
|
ggml_cuda_op_conv2d(ctx, dst);
|
||||||
|
break;
|
||||||
case GGML_OP_CONV_2D_DW:
|
case GGML_OP_CONV_2D_DW:
|
||||||
ggml_cuda_op_conv2d_dw(ctx, dst);
|
ggml_cuda_op_conv2d_dw(ctx, dst);
|
||||||
break;
|
break;
|
||||||
@@ -3501,6 +3505,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|||||||
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
|
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
|
||||||
}
|
}
|
||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
|
case GGML_OP_CONV_2D:
|
||||||
case GGML_OP_CONV_2D_DW:
|
case GGML_OP_CONV_2D_DW:
|
||||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||||
case GGML_OP_POOL_2D:
|
case GGML_OP_POOL_2D:
|
||||||
|
|||||||
Reference in New Issue
Block a user