mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	CUDA: add conv_2d_transpose (#14287)
* CUDA: add conv_2d_transpose * remove direct include of cuda_fp16 * Review: add brackets for readability, remove ggml_set_param and add asserts
This commit is contained in:
		
							
								
								
									
										91
									
								
								ggml/src/ggml-cuda/conv2d-transpose.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										91
									
								
								ggml/src/ggml-cuda/conv2d-transpose.cu
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,91 @@ | ||||
| #include <algorithm> | ||||
|  | ||||
| #include "conv2d-transpose.cuh" | ||||
| #include "ggml.h" | ||||
|  | ||||
| __global__ void conv2d_transpose_kernel(const float * __restrict__ input, const half * __restrict__ kernel, | ||||
|                                         float * __restrict__ output, const int in_w, const int in_h, const int out_w, | ||||
|                                         const int out_h, const int kernel_w, const int kernel_h, const int stride, | ||||
|                                         const int c_in, const int c_out, const int batches) { | ||||
|     const int global_idx = blockIdx.x * blockDim.x + threadIdx.x; | ||||
|  | ||||
|     const int total_elements = out_w * out_h * c_out * batches; | ||||
|  | ||||
|     if (global_idx >= total_elements) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     const int out_x_idx = global_idx % out_w; | ||||
|     const int out_y_idx = (global_idx / out_w) % out_h; | ||||
|     const int c_idx     = (global_idx / (out_w * out_h)) % c_out; | ||||
|     const int n_idx     = global_idx / (out_w * out_h * c_out); | ||||
|  | ||||
|     float accumulator = 0; | ||||
|     // For each output idx, find the inputs that contribute to it by checking stride alignment and bounds | ||||
|  | ||||
|     for (int c_in_idx = 0; c_in_idx < c_in; c_in_idx++) { | ||||
|         for (int kh = 0; kh < kernel_h; ++kh) { | ||||
|             int in_y = out_y_idx - kh; | ||||
|             if (in_y < 0 || in_y % stride) continue; | ||||
|             in_y /= stride; | ||||
|             if (in_y >= in_h) continue; | ||||
|  | ||||
|             for (int kw = 0; kw < kernel_w; ++kw) { | ||||
|                 int in_x = out_x_idx - kw; | ||||
|                 if (in_x < 0 || in_x % stride) continue; | ||||
|                 in_x /= stride; | ||||
|                 if (in_x >= in_w) continue; | ||||
|  | ||||
|                 const int input_idx = (in_w * in_h * c_in) * n_idx + (in_w * in_h) * c_in_idx + (in_w) *in_y + in_x; | ||||
|                 const int kernel_idx = | ||||
|                     (kernel_h * kernel_w * c_out) * c_in_idx + (kernel_h * kernel_w) * c_idx + (kernel_w) *kh + kw; | ||||
|  | ||||
|                 float input_val = input[input_idx]; | ||||
|                 half  kern_val  = kernel[kernel_idx]; | ||||
|  | ||||
|                 accumulator += input_val * (float) kern_val; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     output[(out_w * out_h * c_out) * n_idx + (out_w * out_h) * c_idx + (out_w) *out_y_idx + out_x_idx] = accumulator; | ||||
| } | ||||
|  | ||||
| //input is (W, H, C_in, N), Kernel is (W, H, C_out, C_in) | ||||
| void ggml_cuda_conv_2d_transpose_p0(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | ||||
|     const ggml_tensor * kernel = dst->src[0]; | ||||
|     const ggml_tensor * input  = dst->src[1]; | ||||
|  | ||||
|     GGML_ASSERT(kernel->type == GGML_TYPE_F16 && input->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); | ||||
|  | ||||
|     const float * input_data  = (const float *) input->data; | ||||
|     float *       output_data = (float *) dst->data; | ||||
|     const half * kernel_data = (const half *) kernel->data; | ||||
|  | ||||
|     const int input_w      = input->ne[0]; | ||||
|     const int input_h      = input->ne[1]; | ||||
|     const int output_w     = dst->ne[0]; | ||||
|     const int output_h     = dst->ne[1]; | ||||
|     const int channels_in  = input->ne[2]; | ||||
|     const int channels_out = kernel->ne[2]; | ||||
|     const int kernel_w     = kernel->ne[0]; | ||||
|     const int kernel_h     = kernel->ne[1]; | ||||
|     const int stride       = dst->op_params[0]; | ||||
|     const int batches      = input->ne[3]; | ||||
|  | ||||
|     GGML_ASSERT(channels_in == kernel->ne[3]); | ||||
|     GGML_ASSERT(stride > 0); | ||||
|  | ||||
|     cudaStream_t st = ctx.stream(); | ||||
|  | ||||
|     GGML_ASSERT(ggml_is_contiguous(input)); | ||||
|     GGML_ASSERT(ggml_is_contiguous(kernel)); | ||||
|     GGML_ASSERT(ggml_is_contiguous(dst)); | ||||
|  | ||||
|     const int total  = (output_w * output_h * channels_out * batches); | ||||
|     const int blocks = (total + CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE - 1) / CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE; | ||||
|  | ||||
|     conv2d_transpose_kernel<<<blocks, CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE, 0, st>>>( | ||||
|         input_data, kernel_data, output_data, input_w, input_h, output_w, output_h, kernel_w, kernel_h, stride, | ||||
|         channels_in, channels_out, batches); | ||||
| } | ||||
							
								
								
									
										4
									
								
								ggml/src/ggml-cuda/conv2d-transpose.cuh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								ggml/src/ggml-cuda/conv2d-transpose.cuh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,4 @@ | ||||
| #include "common.cuh" | ||||
|  | ||||
| #define CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE 256 | ||||
| void ggml_cuda_conv_2d_transpose_p0(ggml_backend_cuda_context & ctx, ggml_tensor * dst); | ||||
| @@ -12,6 +12,7 @@ | ||||
| #include "ggml-cuda/concat.cuh" | ||||
| #include "ggml-cuda/conv-transpose-1d.cuh" | ||||
| #include "ggml-cuda/conv2d-dw.cuh" | ||||
| #include "ggml-cuda/conv2d-transpose.cuh" | ||||
| #include "ggml-cuda/convert.cuh" | ||||
| #include "ggml-cuda/count-equal.cuh" | ||||
| #include "ggml-cuda/cpy.cuh" | ||||
| @@ -2341,6 +2342,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg | ||||
|         case GGML_OP_CONV_2D_DW: | ||||
|             ggml_cuda_op_conv2d_dw(ctx, dst); | ||||
|             break; | ||||
|         case GGML_OP_CONV_TRANSPOSE_2D: | ||||
|             ggml_cuda_conv_2d_transpose_p0(ctx, dst); | ||||
|             break; | ||||
|         case GGML_OP_CONV_TRANSPOSE_1D: | ||||
|             ggml_cuda_op_conv_transpose_1d(ctx,dst); | ||||
|             break; | ||||
| @@ -3252,6 +3256,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g | ||||
|         } | ||||
|         case GGML_OP_IM2COL: | ||||
|         case GGML_OP_CONV_2D_DW: | ||||
|         case GGML_OP_CONV_TRANSPOSE_2D: | ||||
|         case GGML_OP_POOL_2D: | ||||
|         case GGML_OP_SUM: | ||||
|         case GGML_OP_SUM_ROWS: | ||||
|   | ||||
| @@ -2725,6 +2725,35 @@ struct test_conv_transpose_1d : public test_case { | ||||
|     } | ||||
| }; | ||||
|  | ||||
| // GGML_OP_CONV_TRANSPOSE_2D | ||||
| struct test_conv_transpose_2d : public test_case { | ||||
|     const std::array<int64_t, 4> ne_input; | ||||
|     const std::array<int64_t, 4> ne_kernel; | ||||
|     const int stride; | ||||
|  | ||||
|     std::string vars() override { | ||||
|         return VARS_TO_STR3(ne_input, ne_kernel, stride); | ||||
|     } | ||||
|  | ||||
|     test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] | ||||
|                            std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1] | ||||
|                            int stride = 1) | ||||
|         : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){} | ||||
|  | ||||
|     ggml_tensor * build_graph(ggml_context * ctx) override { | ||||
|         ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data()); | ||||
|         ggml_set_name(input, "input"); | ||||
|  | ||||
|         ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data()); | ||||
|         ggml_set_name(kernel, "kernel"); | ||||
|  | ||||
|         ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride); | ||||
|         ggml_set_name(out, "out"); | ||||
|  | ||||
|         return out; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| // GGML_OP_IM2COL | ||||
| struct test_im2col : public test_case { | ||||
|     const ggml_type type_input; | ||||
| @@ -4050,6 +4079,9 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() { | ||||
|     test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1)); | ||||
|     test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1)); | ||||
|  | ||||
|     test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1)); | ||||
|     test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2)); | ||||
|  | ||||
|     test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4,  500, 1, 1})); | ||||
|     test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1})); | ||||
|  | ||||
| @@ -4618,6 +4650,8 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() { | ||||
|     test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false)); | ||||
|     test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true)); | ||||
|  | ||||
|     test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1)); | ||||
|  | ||||
|     return test_cases; | ||||
| } | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Aman Gupta
					Aman Gupta