mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
[SYCL] fix UT fault cases: count-equal, argsort, pad OPs (#16521)
* fix/refactor OP argsort, pad * fix count-equal op * update SYCL OP list * fix format issue --------- Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
This commit is contained in:
18
docs/ops.md
18
docs/ops.md
@@ -31,7 +31,7 @@ Legend:
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
@@ -51,7 +51,7 @@ Legend:
|
||||
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
|
||||
@@ -65,11 +65,11 @@ Legend:
|
||||
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
|
||||
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| OPT_STEP_SGD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
@@ -92,9 +92,9 @@ Legend:
|
||||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ |
|
||||
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ | ❌ |
|
||||
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
@@ -102,9 +102,11 @@ Legend:
|
||||
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| SWIGLU_OAI | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
|
||||
| XIELU | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
|
||||
16344
docs/ops/SYCL.csv
16344
docs/ops/SYCL.csv
File diff suppressed because it is too large
Load Diff
@@ -18,6 +18,7 @@
|
||||
#include "concat.hpp"
|
||||
#include "conv.hpp"
|
||||
#include "convert.hpp"
|
||||
#include "count-equal.hpp"
|
||||
#include "cpy.hpp"
|
||||
#include "dequantize.hpp"
|
||||
#include "dmmv.hpp"
|
||||
@@ -28,6 +29,7 @@
|
||||
#include "mmvq.hpp"
|
||||
#include "norm.hpp"
|
||||
#include "outprod.hpp"
|
||||
#include "pad.hpp"
|
||||
#include "quantize.hpp"
|
||||
#include "quants.hpp"
|
||||
#include "rope.hpp"
|
||||
|
||||
@@ -303,10 +303,6 @@ inline void ggml_sycl_op_sub(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
|
||||
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_sub>>(ctx, dst->src[0], dst->src[1], dst);
|
||||
}
|
||||
|
||||
inline void ggml_sycl_op_count_equal(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_count_equal>>(ctx, dst->src[0], dst->src[1], dst);
|
||||
}
|
||||
|
||||
inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
|
||||
|
||||
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, dst->src[0], dst->src[1], dst);
|
||||
@@ -332,11 +328,6 @@ void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
ggml_sycl_op_sub(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_sycl_count_equal(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
|
||||
ggml_sycl_op_count_equal(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
|
||||
ggml_sycl_op_mul(ctx, dst);
|
||||
|
||||
@@ -16,12 +16,6 @@ static __dpct_inline__ float op_sub(const float a, const float b) {
|
||||
return a - b;
|
||||
}
|
||||
|
||||
static __dpct_inline__ float op_count_equal(const float a, const float b) {
|
||||
return (a == b) ? 1.0f : 0.0f;
|
||||
}
|
||||
|
||||
void ggml_sycl_count_equal(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
static __dpct_inline__ float op_mul(const float a, const float b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
@@ -195,7 +195,8 @@ struct optimize_feature {
|
||||
|
||||
struct sycl_device_info {
|
||||
int cc; // compute capability
|
||||
// int nsm; // number of streaming multiprocessors
|
||||
int nsm; // number of streaming multiprocessors (CUDA) maps to the maximum
|
||||
// number of compute units on a SYCL device.
|
||||
// size_t smpb; // max. shared memory per block
|
||||
size_t smpbo; // max. shared memory per block (with opt-in)
|
||||
bool vmm; // virtual memory support
|
||||
|
||||
79
ggml/src/ggml-sycl/count-equal.cpp
Normal file
79
ggml/src/ggml-sycl/count-equal.cpp
Normal file
@@ -0,0 +1,79 @@
|
||||
#include "count-equal.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
template <typename T>
|
||||
static void count_equal(const T *__restrict__ x, const T *__restrict__ y,
|
||||
int64_t *__restrict__ dst, const int64_t dk,
|
||||
const int64_t k) {
|
||||
auto item_ct1 = sycl::ext::oneapi::this_work_item::get_nd_item<3>();
|
||||
const int64_t i0 = (int64_t)item_ct1.get_group(2) * dk;
|
||||
const int64_t i1 = sycl::min(i0 + dk, k);
|
||||
|
||||
int nequal = 0;
|
||||
|
||||
for (int64_t i = i0 + item_ct1.get_local_id(2); i < i1; i += WARP_SIZE) {
|
||||
const T xi = x[i];
|
||||
const T yi = y[i];
|
||||
nequal += xi == yi;
|
||||
}
|
||||
|
||||
nequal = warp_reduce_sum(nequal);
|
||||
|
||||
if (item_ct1.get_local_id(2) != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
dpct::atomic_fetch_add<sycl::access::address_space::generic_space>(
|
||||
(int *)dst, nequal);
|
||||
}
|
||||
|
||||
void ggml_sycl_count_equal(ggml_backend_sycl_context &ctx, ggml_tensor *dst) {
|
||||
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_I64);
|
||||
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
|
||||
int64_t * dst_d = (int64_t *) dst->data;
|
||||
|
||||
dpct::queue_ptr stream = ctx.stream();
|
||||
const int id = get_current_device_id();
|
||||
const int nsm = ggml_sycl_info().devices[id].nsm;
|
||||
|
||||
const int64_t ne = ggml_nelements(src0);
|
||||
GGML_ASSERT(ne < (1 << 30) && "atomicAdd implementation only supports int");
|
||||
const int64_t dne =
|
||||
GGML_PAD((ne + 4 * nsm - 1) / (4 * nsm), SYCL_COUNT_EQUAL_CHUNK_SIZE);
|
||||
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(stream->memset(dst_d, 0, ggml_nbytes(dst))));
|
||||
|
||||
const dpct::dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dpct::dim3 block_nums(
|
||||
std::min((int64_t)4 * nsm, (ne + SYCL_COUNT_EQUAL_CHUNK_SIZE - 1) /
|
||||
SYCL_COUNT_EQUAL_CHUNK_SIZE),
|
||||
1, 1);
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_I32: {
|
||||
const int *src0_d = (const int *)src0->data;
|
||||
const int *src1_d = (const int *)src1->data;
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
count_equal(src0_d, src1_d, dst_d, dne, ne);
|
||||
GGML_UNUSED(item_ct1);
|
||||
});
|
||||
|
||||
} break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
9
ggml/src/ggml-sycl/count-equal.hpp
Normal file
9
ggml/src/ggml-sycl/count-equal.hpp
Normal file
@@ -0,0 +1,9 @@
|
||||
#ifndef GGML_SYCL_COUNT_EQUAL_HPP
|
||||
#define GGML_SYCL_COUNT_EQUAL_HPP
|
||||
#include "common.hpp"
|
||||
|
||||
#define SYCL_COUNT_EQUAL_CHUNK_SIZE 128
|
||||
|
||||
void ggml_sycl_count_equal(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
#endif //GGML_SYCL_COUNT_EQUAL_HPP
|
||||
@@ -328,26 +328,6 @@ static void upscale(const T *x, T *dst, const int nb00, const int nb01,
|
||||
dst[index] = *(const T *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void pad(const T *x, T *dst, const int ne0, const int ne00, const int ne01, const int ne02,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
int nidx = SYCL_LOCAL_ID_CALC(item_ct1, 2);
|
||||
if (nidx >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// operation
|
||||
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
|
||||
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
||||
if (nidx < ne00 && item_ct1.get_group(1) < (size_t) ne01 && item_ct1.get_group(0) < (size_t) ne02) {
|
||||
int offset_src = nidx + item_ct1.get_group(1) * ne00 +
|
||||
item_ct1.get_group(0) * ne00 * ne01;
|
||||
dst[offset_dst] = x[offset_src];
|
||||
} else {
|
||||
dst[offset_dst] = static_cast<T>(0.0f);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void clamp(const T * x, T * dst, const float min, const float max, const int k,
|
||||
const sycl::nd_item<1> &item_ct1) {
|
||||
@@ -431,18 +411,6 @@ static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01,
|
||||
});
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void pad_sycl(const T *x, T *dst, const int ne00,
|
||||
const int ne01, const int ne02, const int ne0,
|
||||
const int ne1, const int ne2, queue_ptr stream) {
|
||||
int num_blocks = ceil_div(ne0, SYCL_PAD_BLOCK_SIZE);
|
||||
sycl::range<3> gridDim(ne2, ne1, num_blocks);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) { pad(x, dst, ne0, ne00, ne01, ne02, item_ct1); });
|
||||
}
|
||||
|
||||
template<typename KernelInvoker, typename... Args>
|
||||
static inline void dispatch_ggml_sycl_op_unary(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
|
||||
#if defined (GGML_SYCL_F16)
|
||||
@@ -596,40 +564,6 @@ static inline void dispatch_ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx
|
||||
}
|
||||
}
|
||||
|
||||
template<typename KernelInvoker, typename... Args>
|
||||
static inline void dispatch_ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
|
||||
#if defined (GGML_SYCL_F16)
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
#else
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
#endif
|
||||
GGML_ASSERT(dst->src[0]->type == dst->type);
|
||||
GGML_ASSERT(dst->src[0]->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
dpct::queue_ptr main_stream = ctx.stream();
|
||||
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
||||
switch (dst->type) {
|
||||
#if defined (GGML_SYCL_F16)
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
auto data_pts = cast_data<sycl::half>(dst);
|
||||
kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->ne[0], (int)dst->src[0]->ne[1], (int)dst->src[0]->ne[2], (int)dst->ne[0],
|
||||
(int)dst->ne[1], (int)dst->ne[2], main_stream, std::forward<Args>(args)...);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
auto data_pts = cast_data<float>(dst);
|
||||
kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->ne[0], (int)dst->src[0]->ne[1], (int)dst->src[0]->ne[2], (int)dst->ne[0],
|
||||
(int)dst->ne[1], (int)dst->ne[2], main_stream, std::forward<Args>(args)...);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
GGML_ABORT("GGML tensor type not supported!\n");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace ggml_sycl_detail
|
||||
|
||||
@@ -919,14 +853,6 @@ static inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_te
|
||||
});
|
||||
}
|
||||
|
||||
static inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
ggml_sycl_detail::dispatch_ggml_sycl_op_pad(ctx, dst,
|
||||
[](const auto* src, auto* dst_ptr, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2,
|
||||
queue_ptr stream) {
|
||||
ggml_sycl_detail::pad_sycl(src, dst_ptr, ne00, ne01, ne02, ne0, ne1, ne2, stream);
|
||||
});
|
||||
}
|
||||
|
||||
static inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
float min_val;
|
||||
float max_val;
|
||||
@@ -1119,10 +1045,6 @@ void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
ggml_sycl_op_upscale(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
||||
ggml_sycl_op_pad(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
||||
|
||||
@@ -67,8 +67,6 @@ void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@@ -85,9 +85,11 @@ static ggml_sycl_device_info ggml_sycl_init() {
|
||||
|
||||
info.devices[i].cc =
|
||||
100 * prop.get_major_version() + 10 * prop.get_minor_version();
|
||||
info.devices[i].nsm = prop.get_max_compute_units();
|
||||
info.devices[i].opt_feature.reorder = device.ext_oneapi_architecture_is(syclex::arch_category::intel_gpu);
|
||||
info.max_work_group_sizes[i] = prop.get_max_work_group_size();
|
||||
info.devices[i].smpbo = prop.get_local_mem_size();
|
||||
|
||||
info.max_work_group_sizes[i] = prop.get_max_work_group_size();
|
||||
}
|
||||
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
@@ -1512,60 +1514,70 @@ static inline void ggml_sycl_swap(T & a, T & b) {
|
||||
template <ggml_sort_order order>
|
||||
__dpct_inline__ static void
|
||||
k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad,
|
||||
const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) {
|
||||
const int tasks_per_thread, const sycl::nd_item<3> &item_ct1,
|
||||
uint8_t *dpct_local) {
|
||||
// bitonic sort
|
||||
int col = item_ct1.get_local_id(2);
|
||||
int col_index = item_ct1.get_local_id(2);
|
||||
int row = item_ct1.get_group(1);
|
||||
|
||||
if (col >= ncols_pad) {
|
||||
return;
|
||||
for (int i = 0; i < tasks_per_thread; i++) {
|
||||
int col = col_index * tasks_per_thread + i;
|
||||
if (col >= ncols_pad) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
const float * x_row = x + row * ncols;
|
||||
auto dst_row = (int *)dpct_local;
|
||||
|
||||
// initialize indices
|
||||
dst_row[col] = col;
|
||||
for (int i=0;i<tasks_per_thread;i++){
|
||||
int col = col_index*tasks_per_thread+i;
|
||||
dst_row[col] = col;
|
||||
}
|
||||
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
|
||||
for (int k = 2; k <= ncols_pad; k *= 2) {
|
||||
for (int j = k / 2; j > 0; j /= 2) {
|
||||
int ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (dst_row[col] >= ncols ||
|
||||
(dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
|
||||
) {
|
||||
ggml_sycl_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
} else {
|
||||
if (dst_row[ixj] >= ncols ||
|
||||
(dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
|
||||
) {
|
||||
ggml_sycl_swap(dst_row[col], dst_row[ixj]);
|
||||
for (int i = 0; i < tasks_per_thread; i++) {
|
||||
int col = col_index * tasks_per_thread + i;
|
||||
int ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (dst_row[col] >= ncols ||
|
||||
(dst_row[ixj] < ncols &&
|
||||
(order == GGML_SORT_ORDER_ASC
|
||||
? x_row[dst_row[col]] > x_row[dst_row[ixj]]
|
||||
: x_row[dst_row[col]] <
|
||||
x_row[dst_row[ixj]]))) {
|
||||
ggml_sycl_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
} else {
|
||||
if (dst_row[ixj] >= ncols ||
|
||||
(dst_row[col] < ncols &&
|
||||
(order == GGML_SORT_ORDER_ASC
|
||||
? x_row[dst_row[col]] < x_row[dst_row[ixj]]
|
||||
: x_row[dst_row[col]] >
|
||||
x_row[dst_row[ixj]]))) {
|
||||
ggml_sycl_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
}
|
||||
}
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
}
|
||||
/*
|
||||
DPCT1118:1: SYCL group functions and algorithms must be encountered
|
||||
in converged control flow. You may need to adjust the code.
|
||||
*/
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
}
|
||||
}
|
||||
|
||||
// copy the result to dst without the padding
|
||||
if (col < ncols) {
|
||||
dst[row * ncols + col] = dst_row[col];
|
||||
for (int i = 0; i < tasks_per_thread; i++) {
|
||||
int col = col_index * tasks_per_thread + i;
|
||||
if (col < ncols) {
|
||||
dst[row * ncols + col] = dst_row[col];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||||
@@ -1738,11 +1750,20 @@ static int next_power_of_2(int x) {
|
||||
|
||||
static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
||||
const int nrows, ggml_sort_order order,
|
||||
queue_ptr stream) {
|
||||
queue_ptr stream, int device) {
|
||||
// bitonic sort requires ncols to be power of 2
|
||||
const int ncols_pad = next_power_of_2(ncols);
|
||||
|
||||
const sycl::range<3> block_dims(1, 1, ncols_pad);
|
||||
int nth = 1;
|
||||
int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
|
||||
while (nth < ncols_pad && nth < max_block_size)
|
||||
nth *= 2;
|
||||
if (nth > max_block_size)
|
||||
nth = max_block_size;
|
||||
|
||||
const int tasks_per_thread = ncols_pad / nth;
|
||||
|
||||
const sycl::range<3> block_dims(1, 1, nth);
|
||||
const sycl::range<3> block_nums(1, nrows, 1);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
|
||||
@@ -1755,8 +1776,9 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(
|
||||
x, dst, ncols, ncols_pad, item_ct1,
|
||||
dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
|
||||
x, dst, ncols, ncols_pad, tasks_per_thread, item_ct1,
|
||||
dpct_local_acc_ct1
|
||||
.get_multi_ptr<sycl::access::decorated::no>()
|
||||
.get());
|
||||
});
|
||||
});
|
||||
@@ -1769,8 +1791,9 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(
|
||||
x, dst, ncols, ncols_pad, item_ct1,
|
||||
dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
|
||||
x, dst, ncols, ncols_pad, tasks_per_thread, item_ct1,
|
||||
dpct_local_acc_ct1
|
||||
.get_multi_ptr<sycl::access::decorated::no>()
|
||||
.get());
|
||||
});
|
||||
});
|
||||
@@ -2142,7 +2165,8 @@ inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor *
|
||||
|
||||
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||
|
||||
argsort_f32_i32_sycl(src0_dd, (int *) dst_dd, ncols, nrows, order, main_stream);
|
||||
argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order,
|
||||
main_stream, ctx.device);
|
||||
}
|
||||
|
||||
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
@@ -4413,8 +4437,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_ACC:
|
||||
return true;
|
||||
case GGML_OP_PAD:
|
||||
return (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) &&
|
||||
(ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0);
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
|
||||
97
ggml/src/ggml-sycl/pad.cpp
Normal file
97
ggml/src/ggml-sycl/pad.cpp
Normal file
@@ -0,0 +1,97 @@
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2025 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
//#include "common.hpp"
|
||||
#include "pad.hpp"
|
||||
|
||||
static void pad_f32(const float * src, float * dst,
|
||||
const int lp0, const int rp0, const int lp1, const int rp1,
|
||||
const int lp2, const int rp2, const int lp3, const int rp3,
|
||||
const int ne0, const int ne1, const int ne2, const int ne3) {
|
||||
auto item_ct1 = sycl::ext::oneapi::this_work_item::get_nd_item<3>();
|
||||
int i0 = item_ct1.get_local_id(2) +
|
||||
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
||||
int i1 = item_ct1.get_group(1);
|
||||
int i2 = item_ct1.get_group(0) % ne2;
|
||||
int i3 = item_ct1.get_group(0) / ne2;
|
||||
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||
return;
|
||||
}
|
||||
|
||||
// operation
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
if ((i0 >= lp0 && i0 < ne0 - rp0) &&
|
||||
(i1 >= lp1 && i1 < ne1 - rp1) &&
|
||||
(i2 >= lp2 && i2 < ne2 - rp2) &&
|
||||
(i3 >= lp3 && i3 < ne3 - rp3)) {
|
||||
const int64_t i00 = i0 - lp0;
|
||||
const int64_t i01 = i1 - lp1;
|
||||
const int64_t i02 = i2 - lp2;
|
||||
const int64_t i03 = i3 - lp3;
|
||||
const int64_t ne02 = ne2 - lp2 - rp2;
|
||||
const int64_t ne01 = ne1 - lp1 - rp1;
|
||||
const int64_t ne00 = ne0 - lp0 - rp0;
|
||||
|
||||
const int64_t src_idx = i03 * (ne00 * ne01 * ne02) +
|
||||
i02 * (ne00 * ne01) + i01 * ne00 + i00;
|
||||
|
||||
dst[dst_idx] = src[src_idx];
|
||||
} else {
|
||||
dst[dst_idx] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
static void pad_f32_sycl(const float *src, float *dst, const int lp0,
|
||||
const int rp0, const int lp1, const int rp1,
|
||||
const int lp2, const int rp2, const int lp3,
|
||||
const int rp3, const int ne0, const int ne1,
|
||||
const int ne2, const int ne3,
|
||||
dpct::queue_ptr stream) {
|
||||
int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
|
||||
dpct::dim3 gridDim(num_blocks, ne1, ne2 * ne3);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
pad_f32(src, dst, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, ne0, ne1,
|
||||
ne2, ne3);
|
||||
});
|
||||
}
|
||||
|
||||
void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
dpct::queue_ptr stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const int32_t lp0 = ((const int32_t*)(dst->op_params))[0];
|
||||
const int32_t rp0 = ((const int32_t*)(dst->op_params))[1];
|
||||
const int32_t lp1 = ((const int32_t*)(dst->op_params))[2];
|
||||
const int32_t rp1 = ((const int32_t*)(dst->op_params))[3];
|
||||
const int32_t lp2 = ((const int32_t*)(dst->op_params))[4];
|
||||
const int32_t rp2 = ((const int32_t*)(dst->op_params))[5];
|
||||
const int32_t lp3 = ((const int32_t*)(dst->op_params))[6];
|
||||
const int32_t rp3 = ((const int32_t*)(dst->op_params))[7];
|
||||
|
||||
pad_f32_sycl(src0_d, dst_d,
|
||||
lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3,
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
|
||||
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
||||
ggml_sycl_op_pad(ctx, dst);
|
||||
}
|
||||
24
ggml/src/ggml-sycl/pad.hpp
Normal file
24
ggml/src/ggml-sycl/pad.hpp
Normal file
@@ -0,0 +1,24 @@
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2025 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_PAD_HPP
|
||||
#define GGML_SYCL_PAD_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
#define SYCL_PAD_BLOCK_SIZE 256
|
||||
|
||||
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
#endif // GGML_SYCL_PAD_HPP
|
||||
Reference in New Issue
Block a user