mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	examples : do not use common library in simple example (#9803)
* examples : do not use common library in simple example * add command line parser, simplify code
This commit is contained in:
		| @@ -1,5 +1,5 @@ | ||||
| set(TARGET llama-simple) | ||||
| add_executable(${TARGET} simple.cpp) | ||||
| install(TARGETS ${TARGET} RUNTIME) | ||||
| target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) | ||||
| target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT}) | ||||
| target_compile_features(${TARGET} PRIVATE cxx_std_11) | ||||
|   | ||||
| @@ -1,50 +1,112 @@ | ||||
| #include "arg.h" | ||||
| #include "common.h" | ||||
| #include "log.h" | ||||
| #include "llama.h" | ||||
|  | ||||
| #include <cstdio> | ||||
| #include <cstring> | ||||
| #include <string> | ||||
| #include <vector> | ||||
|  | ||||
| static void print_usage(int, char ** argv) { | ||||
|     LOG("\nexample usage:\n"); | ||||
|     LOG("\n    %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]); | ||||
|     LOG("\n"); | ||||
|     printf("\nexample usage:\n"); | ||||
|     printf("\n    %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]); | ||||
|     printf("\n"); | ||||
| } | ||||
|  | ||||
| int main(int argc, char ** argv) { | ||||
|     gpt_params params; | ||||
|     // path to the model gguf file | ||||
|     std::string model_path; | ||||
|     // prompt to generate text from | ||||
|     std::string prompt = "Hello my name is"; | ||||
|     // number of layers to offload to the GPU | ||||
|     int ngl = 99; | ||||
|     // number of tokens to predict | ||||
|     int n_predict = 32; | ||||
|  | ||||
|     params.prompt = "Hello my name is"; | ||||
|     params.n_predict = 32; | ||||
|     // parse command line arguments | ||||
|  | ||||
|     if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) { | ||||
|         return 1; | ||||
|     { | ||||
|         int i = 1; | ||||
|         for (; i < argc; i++) { | ||||
|             if (strcmp(argv[i], "-m") == 0) { | ||||
|                 if (i + 1 < argc) { | ||||
|                     model_path = argv[++i]; | ||||
|                 } else { | ||||
|                     print_usage(argc, argv); | ||||
|                     return 1; | ||||
|                 } | ||||
|             } else if (strcmp(argv[i], "-n") == 0) { | ||||
|                 if (i + 1 < argc) { | ||||
|                     try { | ||||
|                         n_predict = std::stoi(argv[++i]); | ||||
|                     } catch (...) { | ||||
|                         print_usage(argc, argv); | ||||
|                         return 1; | ||||
|                     } | ||||
|                 } else { | ||||
|                     print_usage(argc, argv); | ||||
|                     return 1; | ||||
|                 } | ||||
|             } else if (strcmp(argv[i], "-ngl") == 0) { | ||||
|                 if (i + 1 < argc) { | ||||
|                     try { | ||||
|                         ngl = std::stoi(argv[++i]); | ||||
|                     } catch (...) { | ||||
|                         print_usage(argc, argv); | ||||
|                         return 1; | ||||
|                     } | ||||
|                 } else { | ||||
|                     print_usage(argc, argv); | ||||
|                     return 1; | ||||
|                 } | ||||
|             } else { | ||||
|                 // prompt starts here | ||||
|                 break; | ||||
|             } | ||||
|         } | ||||
|         if (model_path.empty()) { | ||||
|             print_usage(argc, argv); | ||||
|             return 1; | ||||
|         } | ||||
|         if (i < argc) { | ||||
|             prompt = argv[i++]; | ||||
|             for (; i < argc; i++) { | ||||
|                 prompt += " "; | ||||
|                 prompt += argv[i]; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     gpt_init(); | ||||
|  | ||||
|     // total length of the sequence including the prompt | ||||
|     const int n_predict = params.n_predict; | ||||
|  | ||||
|     // init LLM | ||||
|  | ||||
|     llama_backend_init(); | ||||
|     llama_numa_init(params.numa); | ||||
|  | ||||
|     // initialize the model | ||||
|  | ||||
|     llama_model_params model_params = llama_model_params_from_gpt_params(params); | ||||
|     llama_model_params model_params = llama_model_default_params(); | ||||
|     model_params.n_gpu_layers = ngl; | ||||
|  | ||||
|     llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); | ||||
|     llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params); | ||||
|  | ||||
|     if (model == NULL) { | ||||
|         fprintf(stderr , "%s: error: unable to load model\n" , __func__); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     // tokenize the prompt | ||||
|  | ||||
|     // find the number of tokens in the prompt | ||||
|     const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true); | ||||
|  | ||||
|     // allocate space for the tokens and tokenize the prompt | ||||
|     std::vector<llama_token> prompt_tokens(n_prompt); | ||||
|     if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) { | ||||
|         fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     // initialize the context | ||||
|  | ||||
|     llama_context_params ctx_params = llama_context_params_from_gpt_params(params); | ||||
|     llama_context_params ctx_params = llama_context_default_params(); | ||||
|     // n_ctx is the context size | ||||
|     ctx_params.n_ctx = n_prompt + n_predict - 1; | ||||
|     // n_batch is the maximum number of tokens that can be processed in a single call to llama_decode | ||||
|     ctx_params.n_batch = n_prompt; | ||||
|     // enable performance counters | ||||
|     ctx_params.no_perf = false; | ||||
|  | ||||
|     llama_context * ctx = llama_new_context_with_model(model, ctx_params); | ||||
|  | ||||
| @@ -53,117 +115,87 @@ int main(int argc, char ** argv) { | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     // initialize the sampler | ||||
|  | ||||
|     auto sparams = llama_sampler_chain_default_params(); | ||||
|  | ||||
|     sparams.no_perf = false; | ||||
|  | ||||
|     llama_sampler * smpl = llama_sampler_chain_init(sparams); | ||||
|  | ||||
|     llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); | ||||
|  | ||||
|     // tokenize the prompt | ||||
|  | ||||
|     std::vector<llama_token> tokens_list; | ||||
|     tokens_list = ::llama_tokenize(ctx, params.prompt, true); | ||||
|  | ||||
|     const int n_ctx    = llama_n_ctx(ctx); | ||||
|     const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size()); | ||||
|  | ||||
|     LOG("\n"); | ||||
|     LOG_INF("%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req); | ||||
|  | ||||
|     // make sure the KV cache is big enough to hold all the prompt and generated tokens | ||||
|     if (n_kv_req > n_ctx) { | ||||
|         LOG_ERR("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); | ||||
|         LOG_ERR("%s:        either reduce n_predict or increase n_ctx\n", __func__); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     // print the prompt token-by-token | ||||
|  | ||||
|     LOG("\n"); | ||||
|  | ||||
|     for (auto id : tokens_list) { | ||||
|         LOG("%s", llama_token_to_piece(ctx, id).c_str()); | ||||
|     for (auto id : prompt_tokens) { | ||||
|         char buf[128]; | ||||
|         int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true); | ||||
|         if (n < 0) { | ||||
|             fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); | ||||
|             return 1; | ||||
|         } | ||||
|         std::string s(buf, n); | ||||
|         printf("%s", s.c_str()); | ||||
|     } | ||||
|  | ||||
|     // create a llama_batch with size 512 | ||||
|     // we use this object to submit token data for decoding | ||||
|     // prepare a batch for the prompt | ||||
|  | ||||
|     llama_batch batch = llama_batch_init(512, 0, 1); | ||||
|  | ||||
|     // evaluate the initial prompt | ||||
|     for (size_t i = 0; i < tokens_list.size(); i++) { | ||||
|         llama_batch_add(batch, tokens_list[i], i, { 0 }, false); | ||||
|     } | ||||
|  | ||||
|     // llama_decode will output logits only for the last token of the prompt | ||||
|     batch.logits[batch.n_tokens - 1] = true; | ||||
|  | ||||
|     if (llama_decode(ctx, batch) != 0) { | ||||
|         LOG("%s: llama_decode() failed\n", __func__); | ||||
|         return 1; | ||||
|     } | ||||
|     llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size(), 0, 0); | ||||
|  | ||||
|     // main loop | ||||
|  | ||||
|     int n_cur    = batch.n_tokens; | ||||
|     int n_decode = 0; | ||||
|  | ||||
|     const auto t_main_start = ggml_time_us(); | ||||
|     int n_decode = 0; | ||||
|     llama_token new_token_id; | ||||
|  | ||||
|     for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) { | ||||
|         // evaluate the current batch with the transformer model | ||||
|         if (llama_decode(ctx, batch)) { | ||||
|             fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); | ||||
|             return 1; | ||||
|         } | ||||
|  | ||||
|         n_pos += batch.n_tokens; | ||||
|  | ||||
|     while (n_cur <= n_predict) { | ||||
|         // sample the next token | ||||
|         { | ||||
|             const llama_token new_token_id = llama_sampler_sample(smpl, ctx, -1); | ||||
|             new_token_id = llama_sampler_sample(smpl, ctx, -1); | ||||
|  | ||||
|             // is it an end of generation? | ||||
|             if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) { | ||||
|                 LOG("\n"); | ||||
|  | ||||
|             if (llama_token_is_eog(model, new_token_id)) { | ||||
|                 break; | ||||
|             } | ||||
|  | ||||
|             LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str()); | ||||
|             char buf[128]; | ||||
|             int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true); | ||||
|             if (n < 0) { | ||||
|                 fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); | ||||
|                 return 1; | ||||
|             } | ||||
|             std::string s(buf, n); | ||||
|             printf("%s", s.c_str()); | ||||
|             fflush(stdout); | ||||
|  | ||||
|             // prepare the next batch | ||||
|             llama_batch_clear(batch); | ||||
|  | ||||
|             // push this new token for next evaluation | ||||
|             llama_batch_add(batch, new_token_id, n_cur, { 0 }, true); | ||||
|             // prepare the next batch with the sampled token | ||||
|             batch = llama_batch_get_one(&new_token_id, 1, n_pos, 0); | ||||
|  | ||||
|             n_decode += 1; | ||||
|         } | ||||
|  | ||||
|         n_cur += 1; | ||||
|  | ||||
|         // evaluate the current batch with the transformer model | ||||
|         if (llama_decode(ctx, batch)) { | ||||
|             LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1); | ||||
|             return 1; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     LOG("\n"); | ||||
|     printf("\n"); | ||||
|  | ||||
|     const auto t_main_end = ggml_time_us(); | ||||
|  | ||||
|     LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", | ||||
|     fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", | ||||
|             __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); | ||||
|  | ||||
|     LOG("\n"); | ||||
|     fprintf(stderr, "\n"); | ||||
|     llama_perf_sampler_print(smpl); | ||||
|     llama_perf_context_print(ctx); | ||||
|     fprintf(stderr, "\n"); | ||||
|  | ||||
|     LOG("\n"); | ||||
|  | ||||
|     llama_batch_free(batch); | ||||
|     llama_sampler_free(smpl); | ||||
|     llama_free(ctx); | ||||
|     llama_free_model(model); | ||||
|  | ||||
|     llama_backend_free(); | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Diego Devesa
					Diego Devesa