model : add LightOnOCR-1B model (#16764)

* model : add LightOnOCR-1B model

* add test
This commit is contained in:
Xuan-Son Nguyen
2025-10-27 16:02:58 +01:00
committed by GitHub
parent 945501f5ea
commit c55d53acec
6 changed files with 56 additions and 5 deletions

View File

@@ -139,6 +139,7 @@ enum projector_type {
PROJECTOR_TYPE_VOXTRAL,
PROJECTOR_TYPE_LFM2,
PROJECTOR_TYPE_KIMIVL,
PROJECTOR_TYPE_LIGHTONOCR,
PROJECTOR_TYPE_UNKNOWN,
};
@@ -161,6 +162,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_VOXTRAL, "voxtral"},
{ PROJECTOR_TYPE_LFM2, "lfm2"},
{ PROJECTOR_TYPE_KIMIVL, "kimivl"},
{ PROJECTOR_TYPE_LIGHTONOCR,"lightonocr"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {

View File

@@ -621,7 +621,7 @@ struct clip_graph {
}
// arrangement of the [IMG_BREAK] token
{
if (model.token_embd_img_break) {
// not efficient, but works
// the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
// and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
@@ -2095,6 +2095,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
res = graph.build_siglip();
} break;
case PROJECTOR_TYPE_PIXTRAL:
case PROJECTOR_TYPE_LIGHTONOCR:
{
res = graph.build_pixtral();
} break;
@@ -2380,6 +2381,7 @@ struct clip_model_loader {
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
} break;
case PROJECTOR_TYPE_PIXTRAL:
case PROJECTOR_TYPE_LIGHTONOCR:
{
hparams.rope_theta = 10000.0f;
hparams.warmup_image_size = hparams.patch_size * 8;
@@ -2722,6 +2724,15 @@ struct clip_model_loader {
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
} break;
case PROJECTOR_TYPE_LIGHTONOCR:
{
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
} break;
case PROJECTOR_TYPE_ULTRAVOX:
{
model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
@@ -3622,7 +3633,9 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
res_imgs->entries.push_back(std::move(img_f32));
return true;
} else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
} else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL
|| ctx->proj_type() == PROJECTOR_TYPE_LIGHTONOCR
) {
clip_image_u8 resized_image;
auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
@@ -3865,12 +3878,17 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
n_patches = x_patch * y_patch;
} break;
case PROJECTOR_TYPE_PIXTRAL:
case PROJECTOR_TYPE_LIGHTONOCR:
{
// dynamic size
int n_merge = params.spatial_merge_size;
int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
if (ctx->model.token_embd_img_break) {
n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
} else {
n_patches = n_patches_y * n_patches_x;
}
} break;
case PROJECTOR_TYPE_VOXTRAL:
case PROJECTOR_TYPE_ULTRAVOX:
@@ -4247,6 +4265,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
} break;
case PROJECTOR_TYPE_PIXTRAL:
case PROJECTOR_TYPE_KIMIVL:
case PROJECTOR_TYPE_LIGHTONOCR:
{
// set the 2D positions
int n_patches_per_col = image_size_width / patch_size;
@@ -4377,6 +4396,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->model.mm_model_peg_0_b->ne[0];
case PROJECTOR_TYPE_MLP:
case PROJECTOR_TYPE_PIXTRAL:
case PROJECTOR_TYPE_LIGHTONOCR:
return ctx->model.mm_2_w->ne[1];
case PROJECTOR_TYPE_MLP_NORM:
return ctx->model.mm_3_b->ne[0];

View File

@@ -275,6 +275,11 @@ struct mtmd_context {
img_beg = "<img>";
img_end = "</img>";
} else if (proj == PROJECTOR_TYPE_LIGHTONOCR) {
// <|im_start|> ... (image embeddings) ... <|im_end|>
img_beg = "<|im_start|>";
img_end = "<|im_end|>";
}
}

View File

@@ -70,6 +70,7 @@ add_test_vision "ggml-org/InternVL3-1B-Instruct-GGUF:Q8_0"
add_test_vision "ggml-org/Qwen2.5-Omni-3B-GGUF:Q4_K_M"
add_test_vision "ggml-org/LFM2-VL-450M-GGUF:Q8_0"
add_test_vision "ggml-org/granite-docling-258M-GGUF:Q8_0"
add_test_vision "ggml-org/LightOnOCR-1B-1025-GGUF:Q8_0"
add_test_audio "ggml-org/ultravox-v0_5-llama-3_2-1b-GGUF:Q8_0"
add_test_audio "ggml-org/Qwen2.5-Omni-3B-GGUF:Q4_K_M"