hexagon: various Op fixes (#17135)

* hexagon: explicitly check for ops with zero nrows

llm_graph_context::build_inp_out_ids() can generate tensors with zero nrows.
Somehow other backends seems to handle this without obvious explicit checks.
In the hexagon case we need to check explicitly and skip them.

* hexagon: introduce fastdiv, fix test-backend-ops for ADD/SUB/MUL

Co-authored-by: chraac <chraac@gmail.com>

* hexagon: use fastdiv in ADD_ID

* hexagon: use ggml_op_is_empty and ggml_is_empty to check for NOPs

---------

Co-authored-by: chraac <chraac@gmail.com>
This commit is contained in:
Max Krasnyansky
2025-11-11 15:25:04 -08:00
committed by GitHub
parent 7d019cff74
commit c273d75375
5 changed files with 105 additions and 58 deletions

View File

@@ -3156,26 +3156,17 @@ static inline bool op_reuse_src1(const ggml_tensor * op1, const ggml_tensor * op
return (op0 && op0->src[1] == op1->src[1]);
}
static inline bool is_compute_op(ggml_tensor *node)
{
return !(ggml_op_is_empty(node->op) || ggml_is_empty(node));
}
// scan the graph and figure out last compute op index
static inline int last_compute_op(ggml_cgraph * graph) {
int last;
int last = 0;
for (int i = 0; i < graph->n_nodes; ++i) {
ggml_tensor * node = graph->nodes[i];
switch (node->op) {
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_MUL:
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_RMS_NORM:
case GGML_OP_GLU:
case GGML_OP_ADD_ID:
last = i;
break;
default:
break;
if (is_compute_op(graph->nodes[i])) {
last = i;
}
}
@@ -3194,6 +3185,10 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
for (int i = 0; i < graph->n_nodes; ++i) {
ggml_tensor * node = graph->nodes[i];
if (!is_compute_op(node)) {
continue;
}
uint32_t flags = 0;
// skip quantizer if src1 is reused
@@ -3245,14 +3240,6 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
ggml_hexagon_rope(node, flags);
break;
// non-compute ops
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
break;
default:
GGML_ABORT("\nggml-hex: graph-compute %s is not supported\n", ggml_op_desc(node));
}

View File

@@ -34,6 +34,11 @@ static hvx_elemwise_f32_func func_table_HVX[] = { hvx_mul_f32, hvx_add_f32,
static hvx_elemwise_f32_func func_table_HVX_opt[] = { hvx_mul_f32_opt, hvx_add_f32_opt, hvx_sub_f32_opt };
#define htp_binary_preamble \
const struct htp_tensor * src0 = &octx->src0; \
const struct htp_tensor * src1 = &octx->src1; \
const struct htp_tensor * src2 = &octx->src2; \
struct htp_tensor * dst = &octx->dst; \
\
const uint32_t ne00 = src0->ne[0]; \
const uint32_t ne01 = src0->ne[1]; \
const uint32_t ne02 = src0->ne[2]; \
@@ -62,16 +67,15 @@ static hvx_elemwise_f32_func func_table_HVX_opt[] = { hvx_mul_f32_opt, hvx_add_f
const uint32_t nb0 = dst->nb[0]; \
const uint32_t nb1 = dst->nb[1]; \
const uint32_t nb2 = dst->nb[2]; \
const uint32_t nb3 = dst->nb[3];
const uint32_t nb3 = dst->nb[3]; \
\
const uint32_t src0_nrows_per_thread = octx->src0_nrows_per_thread;
static void binary_job_f32_per_thread(const struct htp_tensor * src0,
const struct htp_tensor * src1,
struct htp_tensor * dst,
uint8_t * spad_data,
uint32_t nth,
uint32_t ith,
uint32_t src0_nrows_per_thread,
enum htp_op op) {
static void binary_job_f32_per_thread(struct htp_ops_context * octx,
uint8_t * spad_data,
uint32_t nth,
uint32_t ith,
enum htp_op op) {
htp_binary_preamble;
const size_t src0_row_size = nb01;
@@ -107,16 +111,23 @@ static void binary_job_f32_per_thread(const struct htp_tensor * src0,
uint8_t * restrict spad_data_th = spad_data + (ith * src0_row_size);
const uint32_t nr0 = ne00 / ne10;
const uint8_t * restrict src0_ptr = (const uint8_t *) src0->data + (src0_start_row * src0_row_size);
uint8_t * restrict dst_ptr = (uint8_t *) dst->data + (src0_start_row * dst_row_size);
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
const uint8_t * restrict src1_ptr = NULL;
const uint32_t ne02_ne01 = ne02 * ne01;
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
src1_ptr = data_src1 + (ir % src1_nrows) * src1_row_size;
const uint32_t i03 = fastdiv(ir, &octx->src0_div21);
const uint32_t i02 = fastdiv(ir - i03 * ne02_ne01, &octx->src0_div1);
const uint32_t i01 = (ir - i03 * ne02_ne01 - i02 * ne01);
const uint32_t i13 = fastmodulo(i03, ne13, &octx->src1_div3);
const uint32_t i12 = fastmodulo(i02, ne12, &octx->src1_div2);
const uint32_t i11 = fastmodulo(i01, ne11, &octx->src1_div1);
const uint8_t * restrict src1_ptr = data_src1 + i13 * nb13 + i12 * nb12 + i11 * src1_row_size;
if (ir + 1 < src0_end_row) {
htp_l2fetch(src0_ptr + ne00, 1, src0_row_size, src0_row_size);
@@ -125,6 +136,7 @@ static void binary_job_f32_per_thread(const struct htp_tensor * src0,
}
}
const uint32_t nr0 = ne00 / ne10;
if (nr0 > 1) {
if ((1 == is_aligned) && (nr0 == ne00)) {
hvx_bcast_fp32_a(spad_data_th, *(float *) src1_ptr, nr0);
@@ -149,22 +161,17 @@ static void binary_job_f32_per_thread(const struct htp_tensor * src0,
(unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void binary_add_id_job_f32_per_thread(const struct htp_tensor * src0,
const struct htp_tensor * src1,
const struct htp_tensor * src2,
struct htp_tensor * dst,
uint8_t * spad_data,
uint32_t nth,
uint32_t ith,
uint32_t src0_nrows_per_thread,
hvx_elemwise_f32_func func_HVX) {
static void binary_add_id_job_f32_per_thread(struct htp_ops_context * octx,
uint8_t * spad_data,
uint32_t nth,
uint32_t ith,
hvx_elemwise_f32_func func_HVX) {
htp_binary_preamble;
const size_t src0_row_size = nb01;
const size_t src1_row_size = nb11;
const size_t dst_row_size = nb1;
const uint32_t ne02_ne01 = ne02 * ne01;
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
@@ -187,10 +194,11 @@ static void binary_add_id_job_f32_per_thread(const struct htp_tensor * src0,
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
uint8_t * restrict data_dst = (uint8_t *) dst->data;
const uint32_t ne02_ne01 = ne02 * ne01;
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
// src0 indices
const uint32_t i03 = ir / ne02_ne01;
const uint32_t i02 = (ir - i03 * ne02_ne01) / ne01;
const uint32_t i03 = fastdiv(ir, &octx->src0_div21);
const uint32_t i02 = fastdiv(ir - i03 * ne02_ne01, &octx->src0_div1);
const uint32_t i01 = (ir - i03 * ne02_ne01 - i02 * ne01);
// src1 indices
@@ -234,13 +242,11 @@ static void binary_job_dispatcher_f32(unsigned int n, unsigned int i, void * dat
case HTP_OP_MUL:
case HTP_OP_ADD:
case HTP_OP_SUB:
binary_job_f32_per_thread(&octx->src0, &octx->src1, &octx->dst, octx->src1_spad.data, n, i,
octx->src0_nrows_per_thread, octx->op);
binary_job_f32_per_thread(octx, octx->src1_spad.data, n, i, octx->op);
break;
case HTP_OP_ADD_ID:
binary_add_id_job_f32_per_thread(&octx->src0, &octx->src1, &octx->src2, &octx->dst, octx->src0_spad.data, n,
i, octx->src0_nrows_per_thread, hvx_add_f32);
binary_add_id_job_f32_per_thread(octx, octx->src0_spad.data, n, i, hvx_add_f32);
break;
default:
@@ -321,6 +327,16 @@ static int execute_op_binary_f32(struct htp_ops_context * octx) {
octx->src0_nrows_per_thread = (src0_nrows + n_jobs - 1) / n_jobs;
octx->src0_div21 = init_fastdiv_values(src0->ne[2] * src0->ne[1]);
octx->src0_div3 = init_fastdiv_values(src0->ne[3]);
octx->src0_div2 = init_fastdiv_values(src0->ne[2]);
octx->src0_div1 = init_fastdiv_values(src0->ne[1]);
octx->src1_div21 = init_fastdiv_values(src1->ne[2] * src1->ne[1]);
octx->src1_div3 = init_fastdiv_values(src1->ne[3]);
octx->src1_div2 = init_fastdiv_values(src1->ne[2]);
octx->src1_div1 = init_fastdiv_values(src1->ne[1]);
worker_pool_run_func(octx->ctx->worker_pool, binary_op_func, octx, n_jobs);
}

View File

@@ -119,10 +119,10 @@ static const char * htp_type_name(uint32_t t) {
#define HTP_MAX_DIMS 4
struct htp_tensor {
uint32_t data; // Buffer offset in the messages, and data pointer on the NSP
uint32_t type; // Data type
uint32_t ne[HTP_MAX_DIMS]; // Number of elements
uint32_t nb[HTP_MAX_DIMS]; // Stride in bytes (see ggml.h ggml_tensor)
uint32_t data; // Buffer offset in the messages, and data pointer on the NSP
uint32_t type; // Data type
uint32_t ne[HTP_MAX_DIMS]; // Number of elements
uint32_t nb[HTP_MAX_DIMS]; // Stride in bytes (see ggml.h ggml_tensor)
};
#define HTP_MAX_OP_PARAMS 64

View File

@@ -4,6 +4,7 @@
#include "htp-ctx.h"
#include "htp-msg.h"
#include "worker-pool.h"
#include "ops-utils.h"
#include <assert.h>
#include <stdint.h>
@@ -38,6 +39,16 @@ struct htp_ops_context {
uint32_t src0_nrows_per_thread;
uint32_t src1_nrows_per_thread;
struct fastdiv_values src0_div1; // fastdiv values for ne1
struct fastdiv_values src0_div2; // fastdiv values for ne2
struct fastdiv_values src0_div3; // fastdiv values for ne3
struct fastdiv_values src0_div21; // fastdiv values for ne2 * ne1
struct fastdiv_values src1_div1; // fastdiv values for ne1
struct fastdiv_values src1_div2; // fastdiv values for ne2
struct fastdiv_values src1_div3; // fastdiv values for ne3
struct fastdiv_values src1_div21; // fastdiv values for ne2 * ne1
uint32_t flags;
};

View File

@@ -31,6 +31,39 @@ static inline uint32_t htp_round_up(uint32_t n, uint32_t m) {
return m * ((n + m - 1) / m);
}
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
// Precompute mp (m' in the paper) and L such that division
// can be computed using a multiply (high 32b of 64b result)
// and a shift:
//
// n/d = (mulhi(n, mp) + n) >> L;
struct fastdiv_values {
uint32_t mp;
uint32_t l;
};
static inline struct fastdiv_values init_fastdiv_values(uint32_t d) {
struct fastdiv_values result = { 0, 0 };
// compute L = ceil(log2(d));
while (result.l < 32 && ((uint32_t) 1 << result.l) < d) {
++(result.l);
}
result.mp = (uint32_t) (((uint64_t) 1 << 32) * (((uint64_t) 1 << result.l) - d) / d + 1);
return result;
}
static inline uint32_t fastdiv(uint32_t n, const struct fastdiv_values * vals) {
// Compute high 32 bits of n * mp
const uint32_t hi = (uint32_t) (((uint64_t) n * vals->mp) >> 32); // mulhi(n, mp)
// add n, apply bit shift
return (hi + n) >> vals->l;
}
static inline uint32_t fastmodulo(uint32_t n, uint32_t d, const struct fastdiv_values * vals) {
return n - fastdiv(n, vals) * d;
}
static inline void htp_l2fetch(const void * p, uint32_t height, uint32_t width, uint32_t stride) {
const uint64_t control = Q6_P_combine_RR(stride, Q6_R_combine_RlRl(width, height));
asm volatile(" l2fetch(%0,%1) " : : "r"(p), "r"(control));