graph : add llama_graph_result

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-02-18 11:16:53 +02:00
parent f0d3ff2388
commit c23590319a
5 changed files with 167 additions and 350 deletions

View File

@@ -246,32 +246,49 @@ void llama_context::init() {
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
int n_splits_pp = -1;
int n_nodes_pp = -1;
int n_splits_tg = -1;
int n_nodes_tg = -1;
// reserve pp graph first so that buffers are only allocated once
{
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
ggml_cgraph * gf_pp = build_graph(ubatch_pp, true);
auto res_pp = graph_build(ubatch_pp, true);
auto & gf_pp = res_pp.gf;
if (!ggml_backend_sched_reserve(sched.get(), gf_pp)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute pp buffers\n", __func__);
throw std::runtime_error("failed to allocate compute buffers");
}
int n_splits_pp = ggml_backend_sched_get_n_splits(sched.get());
int n_nodes_pp = ggml_graph_n_nodes(gf_pp);
n_splits_pp = ggml_backend_sched_get_n_splits(sched.get());
n_nodes_pp = ggml_graph_n_nodes(gf_pp);
}
// reserve with tg graph to get the number of splits and nodes
{
llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
ggml_cgraph * gf_tg = build_graph(ubatch_tg, true);
auto res_tg = graph_build(ubatch_tg, true);
auto & gf_tg = res_tg.gf;
if (!ggml_backend_sched_reserve(sched.get(), gf_tg)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute tg buffers\n", __func__);
throw std::runtime_error("failed to allocate compute buffers");
}
int n_splits_tg = ggml_backend_sched_get_n_splits(sched.get());
int n_nodes_tg = ggml_graph_n_nodes(gf_tg);
n_splits_tg = ggml_backend_sched_get_n_splits(sched.get());
n_nodes_tg = ggml_graph_n_nodes(gf_tg);
}
// reserve again with pp graph to avoid ggml-alloc reallocations during inference
gf_pp = build_graph(ubatch_pp, true);
{
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
auto res_pp = graph_build(ubatch_pp, true);
auto & gf_pp = res_pp.gf;
if (!ggml_backend_sched_reserve(sched.get(), gf_pp)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute pp buffers\n", __func__);
throw std::runtime_error("failed to allocate compute buffers");
}
}
for (size_t i = 0; i < backend_ptrs.size(); ++i) {
ggml_backend_t backend = backend_ptrs[i];
@@ -890,7 +907,7 @@ void llama_context::build_cb(
}
}
ggml_cgraph * llama_context::build_graph(const llama_ubatch & ubatch, bool worst_case) {
llama_graph_result llama_context::graph_build(const llama_ubatch & ubatch, bool worst_case) {
return model.build_graph(*this, cparams, ubatch, graph_init(), worst_case);
}
@@ -1814,11 +1831,11 @@ int llama_context_kv_self::decode(llama_batch & inp_batch) {
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
ggml_cgraph * gf = build_graph(ubatch, true);
auto res = graph_build(ubatch, true);
// initialize scheduler with the worst-case graph
ggml_backend_sched_reset(sched.get());
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
if (!ggml_backend_sched_reserve(sched.get(), res.gf)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
}
@@ -1828,7 +1845,9 @@ int llama_context_kv_self::decode(llama_batch & inp_batch) {
ggml_backend_sched_reset(sched.get());
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
ggml_cgraph * gf = build_graph(ubatch, false);
auto res = graph_build(ubatch, false);
auto & gf = res.gf;
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
@@ -2073,7 +2092,9 @@ int llama_context_kv_self::encode(llama_batch & inp_batch) {
ggml_backend_sched_reset(sched.get());
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
ggml_cgraph * gf = build_graph(ubatch, false);
auto res = graph_build(ubatch, false);
auto & gf = res.gf;
ggml_backend_sched_alloc_graph(sched.get(), gf);

View File

@@ -95,6 +95,9 @@ struct llama_context : public llama_graph_i {
// zero-out inputs and create ggml_context
virtual ggml_context_ptr graph_init();
// TODO: add encode/decode graphs
virtual llama_graph_result graph_build(const llama_ubatch & ubatch, bool worst_case);
// returns the result of ggml_backend_sched_graph_compute_async execution
virtual enum ggml_status graph_compute(
ggml_cgraph * graph,
@@ -145,9 +148,6 @@ struct llama_context : public llama_graph_i {
const llama_ubatch & ubatch,
int il);
// TODO: add encode/decode graphs
virtual ggml_cgraph * build_graph(const llama_ubatch & ubatch, bool worst_case);
// apply control vector for layer il
virtual ggml_tensor * build_cvec(
ggml_context * ctx0,

View File

@@ -10,6 +10,13 @@ struct ggml_context;
struct ggml_tensor;
struct llama_ubatch;
struct llama_graph_result {
ggml_cgraph * gf = nullptr;
ggml_tensor * t_logits = nullptr;
ggml_tensor * t_embd = nullptr;
};
// TODO: can become more granular in the future
class llama_graph_i {
public:

File diff suppressed because it is too large Load Diff

View File

@@ -16,6 +16,7 @@ class llama_graph_i;
struct llama_cparams;
struct llama_ubatch;
struct llama_model_loader;
struct llama_graph_result;
// available models
enum llm_type {
@@ -368,8 +369,7 @@ struct llama_model {
const struct ggml_tensor * get_tensor(const char * name) const;
// TODO: add encode/decode graphs
// TODO: return a struct containing the graph and the output tensors, such as logits, embeddings, etc.
ggml_cgraph * build_graph(
llama_graph_result build_graph(
llama_graph_i & lgf,
const llama_cparams & cparams,
const llama_ubatch & ubatch,