mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	Update and fix Vulkan soft_max and argsort implementations (#7237)
* Update and fix Vulkan softmax implementation * Update and fix Vulkan argsort implementation
This commit is contained in:
		
							
								
								
									
										194
									
								
								ggml-vulkan.cpp
									
									
									
									
									
								
							
							
						
						
									
										194
									
								
								ggml-vulkan.cpp
									
									
									
									
									
								
							| @@ -294,7 +294,6 @@ struct vk_op_rope_neox_push_constants { | ||||
| struct vk_op_soft_max_push_constants { | ||||
|     uint32_t KX; | ||||
|     uint32_t KY; | ||||
|     uint32_t KZ; | ||||
|     float scale; | ||||
|     float max_bias; | ||||
|     float m0; | ||||
| @@ -304,7 +303,8 @@ struct vk_op_soft_max_push_constants { | ||||
|  | ||||
| struct vk_op_argsort_push_constants { | ||||
|     uint32_t ncols; | ||||
|     bool ascending; | ||||
|     uint32_t ncols_pad; | ||||
|     int32_t order; | ||||
| }; | ||||
|  | ||||
| // Allow pre-recording command buffers | ||||
| @@ -1501,8 +1501,8 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) { | ||||
|  | ||||
|     ggml_vk_create_pipeline(ctx, ctx->device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1); | ||||
|  | ||||
|     ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1); | ||||
|     ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1); | ||||
|     ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1); | ||||
|     ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1); | ||||
|  | ||||
|     ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); | ||||
|     ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); | ||||
| @@ -3752,7 +3752,7 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx | ||||
| } | ||||
|  | ||||
|  | ||||
| static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) { | ||||
| static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) { | ||||
|     switch (op) { | ||||
|     case GGML_OP_ADD: | ||||
|         if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { | ||||
| @@ -3834,7 +3834,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const | ||||
|         if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) { | ||||
|             return ctx->device->pipeline_soft_max_f32; | ||||
|         } | ||||
|         if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && src2->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { | ||||
|         if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { | ||||
|             return ctx->device->pipeline_soft_max_f32_f16; | ||||
|         } | ||||
|         return nullptr; | ||||
| @@ -3900,15 +3900,12 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) { | ||||
| } | ||||
|  | ||||
| template<typename PC> | ||||
| static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) { | ||||
| static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) { | ||||
| #ifdef GGML_VULKAN_DEBUG | ||||
|     std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; | ||||
|     if (src1 != nullptr) { | ||||
|         std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; | ||||
|     } | ||||
|     if (src2 != nullptr) { | ||||
|         std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", backend=" << src2->backend << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3]; | ||||
|     } | ||||
|     std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl; | ||||
| #endif | ||||
|     GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type))));  // NOLINT | ||||
| @@ -3929,10 +3926,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c | ||||
|     const uint64_t nb2  = dst->nb[2]; | ||||
|     const uint64_t nb3  = dst->nb[3]; | ||||
|  | ||||
|     const bool use_src2 = src2 != nullptr; | ||||
|     const uint64_t ne2 = use_src2 ? src2->ne[0] * src2->ne[1] : 0; | ||||
|  | ||||
|     vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op); | ||||
|     vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, dst, op); | ||||
|     ggml_vk_func_t op_func; | ||||
|  | ||||
|     if (pipeline == nullptr) { | ||||
| @@ -3955,18 +3949,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c | ||||
|     ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; | ||||
|     ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; | ||||
|     ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; | ||||
|     ggml_tensor_extra_gpu * extra_src2 = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr; | ||||
|  | ||||
|     vk_buffer d_X = nullptr; | ||||
|     size_t x_buf_offset = 0; | ||||
|     vk_buffer d_Y = nullptr; | ||||
|     size_t y_buf_offset = 0; | ||||
|     vk_buffer d_Z = nullptr; | ||||
|     size_t z_buf_offset = 0; | ||||
|  | ||||
|     bool src0_uma = false; | ||||
|     bool src1_uma = false; | ||||
|     bool src2_uma = false; | ||||
|  | ||||
|     if (ctx->device->uma) { | ||||
|         ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset); | ||||
| @@ -3975,15 +3966,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c | ||||
|             ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset); | ||||
|             src1_uma = d_Y != nullptr; | ||||
|         } | ||||
|         if (use_src2) { | ||||
|             ggml_vk_host_get(ctx, src1->data, d_Z, z_buf_offset); | ||||
|             src2_uma = d_Z != nullptr; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0, ctx->device->properties.limits.minStorageBufferOffsetAlignment); | ||||
|     uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0; | ||||
|     uint64_t z_sz = use_src2 ? ggml_vk_align_size(ggml_type_size(src2->type) * ne2, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0; | ||||
|     uint64_t d_sz = ggml_type_size(dst->type) * ne0; | ||||
|  | ||||
|     vk_buffer d_D = extra->buffer_gpu.lock(); | ||||
| @@ -4007,12 +3993,6 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c | ||||
|         GGML_ASSERT(d_Y != nullptr); | ||||
|     } | ||||
|  | ||||
|     if (use_src2 && !src2_uma) { | ||||
|         d_Z = extra_src2->buffer_gpu.lock(); | ||||
|         z_buf_offset = extra_src2->offset; | ||||
|         GGML_ASSERT(d_Z != nullptr); | ||||
|     } | ||||
|  | ||||
|     if (op_supports_incontiguous) { | ||||
|         x_sz = ggml_nbytes(src0); | ||||
|         y_sz = use_src1 ? ggml_nbytes(src1) : 0; | ||||
| @@ -4046,7 +4026,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c | ||||
|             elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 }; | ||||
|             break; | ||||
|         case GGML_OP_GET_ROWS: | ||||
|             elements = {  (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) }; | ||||
|             elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) }; | ||||
|             break; | ||||
|         case GGML_OP_ARGSORT: | ||||
|             elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 }; | ||||
|             break; | ||||
|         default: | ||||
|             elements = { (uint32_t)ggml_nelements(src0), 1, 1 }; | ||||
| @@ -4066,7 +4049,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c | ||||
|         } | ||||
|  | ||||
|         if (op == GGML_OP_SOFT_MAX) { | ||||
|             // Empty src1 and src2 are possible on soft_max, but the shader needs buffers | ||||
|             // Empty src1 is possible on soft_max, but the shader needs a buffer | ||||
|             vk_subbuffer subbuf_y; | ||||
|             if (use_src1) { | ||||
|                 subbuf_y = { d_Y, y_buf_offset, y_sz }; | ||||
| @@ -4074,15 +4057,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c | ||||
|                 subbuf_y = { d_X, 0, d_X->size }; | ||||
|             } | ||||
|  | ||||
|             vk_subbuffer subbuf_z; | ||||
|             if (use_src2) { | ||||
|                 subbuf_z = { d_Z, z_buf_offset, z_sz }; | ||||
|             } else { | ||||
|                 subbuf_z = { d_X, 0, d_X->size }; | ||||
|             } | ||||
|  | ||||
|             ggml_vk_sync_buffers(subctx); | ||||
|             ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); | ||||
|             ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); | ||||
|         } else if (use_src1) { | ||||
|             ggml_vk_sync_buffers(subctx); | ||||
|             ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); | ||||
| @@ -4099,13 +4075,13 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c | ||||
|         } | ||||
|     } else { | ||||
|         GGML_ASSERT(op != GGML_OP_SOFT_MAX); | ||||
|         GGML_ASSERT(op != GGML_OP_ARGSORT); | ||||
|  | ||||
|         ggml_pipeline_allocate_descriptor_sets(ctx, pipeline, ne02 * ne03); | ||||
|  | ||||
|         switch (dst->op) { | ||||
|         case GGML_OP_NORM: | ||||
|         case GGML_OP_RMS_NORM: | ||||
|         case GGML_OP_SOFT_MAX: | ||||
|             elements = { (uint32_t)ne01, 1, 1 }; | ||||
|             break; | ||||
|         case GGML_OP_DIAG_MASK_INF: | ||||
| @@ -4145,7 +4121,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c | ||||
| } | ||||
|  | ||||
| static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | ||||
|     ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); | ||||
|     ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); | ||||
| } | ||||
|  | ||||
| static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | ||||
| @@ -4153,7 +4129,7 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, | ||||
|     const uint32_t src1_type_size = ggml_type_size(src1->type); | ||||
|     const uint32_t dst_type_size = ggml_type_size(dst->type); | ||||
|  | ||||
|     ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, { | ||||
|     ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_GET_ROWS, { | ||||
|         (uint32_t)ggml_nelements(src0), | ||||
|         (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, | ||||
|         (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, | ||||
| @@ -4168,7 +4144,7 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, cons | ||||
|     const uint32_t src1_type_size = ggml_type_size(src1->type); | ||||
|     const uint32_t dst_type_size = ggml_type_size(dst->type); | ||||
|  | ||||
|     ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, { | ||||
|     ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ADD, { | ||||
|         (uint32_t)ggml_nelements(src0), | ||||
|         (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, | ||||
|         (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, | ||||
| @@ -4183,7 +4159,7 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, cons | ||||
|     const uint32_t src1_type_size = ggml_type_size(src1->type); | ||||
|     const uint32_t dst_type_size = ggml_type_size(dst->type); | ||||
|  | ||||
|     ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, { | ||||
|     ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_MUL, { | ||||
|         (uint32_t)ggml_nelements(src0), | ||||
|         (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, | ||||
|         (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, | ||||
| @@ -4198,7 +4174,7 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, co | ||||
|     const uint32_t src0_type_size = ggml_type_size(src0->type); | ||||
|     const uint32_t dst_type_size = ggml_type_size(dst->type); | ||||
|  | ||||
|     ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, { | ||||
|     ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SCALE, { | ||||
|         (uint32_t)ggml_nelements(src0), | ||||
|         (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, | ||||
|         (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] /  dst_type_size, (uint32_t) dst->nb[1] /  dst_type_size, (uint32_t) dst->nb[2] /  dst_type_size, (uint32_t) dst->nb[3] /  dst_type_size, | ||||
| @@ -4211,7 +4187,7 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, cons | ||||
|     const uint32_t src0_type_size = ggml_type_size(src0->type); | ||||
|     const uint32_t dst_type_size = ggml_type_size(dst->type); | ||||
|  | ||||
|     ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, { | ||||
|     ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SQR, { | ||||
|         (uint32_t)ggml_nelements(src0), | ||||
|         (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, | ||||
|         (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] /  dst_type_size, (uint32_t) dst->nb[1] /  dst_type_size, (uint32_t) dst->nb[2] /  dst_type_size, (uint32_t) dst->nb[3] /  dst_type_size, | ||||
| @@ -4225,7 +4201,7 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, co | ||||
|     const uint32_t src0_type_size = ggml_type_size(src0->type); | ||||
|     const uint32_t dst_type_size = ggml_type_size(dst->type); | ||||
|  | ||||
|     ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, { | ||||
|     ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CLAMP, { | ||||
|         (uint32_t)ggml_nelements(src0), | ||||
|         (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, | ||||
|         (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] /  dst_type_size, (uint32_t) dst->nb[1] /  dst_type_size, (uint32_t) dst->nb[2] /  dst_type_size, (uint32_t) dst->nb[3] /  dst_type_size, | ||||
| @@ -4240,7 +4216,7 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons | ||||
|     const uint32_t dst_type_size = ggml_type_size(dst->type); | ||||
|     const uint32_t d_offset = (extra->offset % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size; | ||||
|  | ||||
|     ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, { | ||||
|     ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CPY, { | ||||
|         (uint32_t)ggml_nelements(src0), | ||||
|         (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, | ||||
|         (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] /  dst_type_size, (uint32_t) dst->nb[1] /  dst_type_size, (uint32_t) dst->nb[2] /  dst_type_size, (uint32_t) dst->nb[3] /  dst_type_size, | ||||
| @@ -4252,24 +4228,24 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons | ||||
| static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { | ||||
|     float * op_params = (float *)dst->op_params; | ||||
|  | ||||
|     ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); | ||||
|     ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); | ||||
| } | ||||
|  | ||||
| static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { | ||||
|     float * op_params = (float *)dst->op_params; | ||||
|     ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); | ||||
|     ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); | ||||
| } | ||||
|  | ||||
| static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { | ||||
|     ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); | ||||
|     ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); | ||||
| } | ||||
|  | ||||
| static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { | ||||
|     int32_t * op_params = (int32_t *)dst->op_params; | ||||
|     ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }); | ||||
|     ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }); | ||||
| } | ||||
|  | ||||
| static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { | ||||
| static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | ||||
|     float * op_params = (float *)dst->op_params; | ||||
|  | ||||
|     float scale = op_params[0]; | ||||
| @@ -4285,13 +4261,9 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, | ||||
|     const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2); | ||||
|     const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); | ||||
|  | ||||
| #pragma message("TODO: src2 is no longer used in soft_max - should be removed and ALiBi calculation should be updated") | ||||
| #pragma message("ref:  https://github.com/ggerganov/llama.cpp/pull/7192") | ||||
|  | ||||
|     ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_SOFT_MAX, { | ||||
|     ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_SOFT_MAX, { | ||||
|         ncols, | ||||
|         src1 != nullptr ? nrows_y : (uint32_t)0, | ||||
|         src2 != nullptr ? (uint32_t)1 : (uint32_t)0, | ||||
|         scale, max_bias, | ||||
|         m0, m1, | ||||
|         n_head_log2, | ||||
| @@ -4321,15 +4293,39 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con | ||||
|     if (is_neox) { | ||||
|         const float theta_scale = powf(freq_base, -2.0f/n_dims); | ||||
|         const float inv_ndims = -1.0f / n_dims; | ||||
|         ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims }); | ||||
|         ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, { | ||||
|             (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], | ||||
|             freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims | ||||
|         }); | ||||
|     } else { | ||||
|         ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f} }); | ||||
|         ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, { | ||||
|             (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], | ||||
|             freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f} | ||||
|         }); | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { | ||||
|     int32_t * op_params = (int32_t *)dst->op_params; | ||||
|     ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, { (uint32_t)src0->ne[0], ((ggml_sort_order) op_params[0]) == GGML_SORT_ORDER_ASC }); | ||||
|  | ||||
|     uint32_t ncols = src0->ne[0]; | ||||
|  | ||||
|     uint32_t ncols_pad = 1; | ||||
|     while (ncols_pad < ncols) { | ||||
|         ncols_pad *= 2; | ||||
|     } | ||||
|  | ||||
|     GGML_ASSERT(ncols_pad <= 1024); | ||||
|  | ||||
|     std::cerr << "ncols=" << ncols << " ncols_pad=" << ncols_pad << " ascending=" << op_params[0] << std::endl; | ||||
|  | ||||
|     std::cerr << ((ggml_sort_order) op_params[0]) << " " << GGML_SORT_ORDER_ASC << std::endl; | ||||
|  | ||||
|     ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_ARGSORT, { | ||||
|         ncols, | ||||
|         ncols_pad, | ||||
|         op_params[0], | ||||
|     }); | ||||
| } | ||||
|  | ||||
| #ifdef GGML_VULKAN_RUN_TESTS | ||||
| @@ -5432,7 +5428,6 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod | ||||
|  | ||||
|     const ggml_tensor * src0 = node->src[0]; | ||||
|     const ggml_tensor * src1 = node->src[1]; | ||||
|     const ggml_tensor * src2 = node->src[2]; | ||||
|  | ||||
|     ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra; | ||||
|  | ||||
| @@ -5547,7 +5542,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod | ||||
|  | ||||
|         break; | ||||
|     case GGML_OP_SOFT_MAX: | ||||
|         ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, src2, node); | ||||
|         ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, node); | ||||
|  | ||||
|         break; | ||||
|     case GGML_OP_ROPE: | ||||
| @@ -6548,7 +6543,7 @@ static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<c | ||||
| } | ||||
|  | ||||
| static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) { | ||||
|     if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) { | ||||
|     if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16 && tensor->type != GGML_TYPE_I32) { | ||||
|         return; | ||||
|     } | ||||
|     i0 = std::max(i0, 5); | ||||
| @@ -6569,6 +6564,8 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d | ||||
|                     val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]); | ||||
|                 } else if (tensor->type == GGML_TYPE_F16) { | ||||
|                     val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0])); | ||||
|                 } else if (tensor->type == GGML_TYPE_I32) { | ||||
|                     val = *(const int32_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]); | ||||
|                 } else { | ||||
|                     GGML_ASSERT(false); | ||||
|                 } | ||||
| @@ -6671,7 +6668,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ | ||||
|  | ||||
|     ggml_tensor * src0 = tensor->src[0]; | ||||
|     ggml_tensor * src1 = tensor->src[1]; | ||||
|     ggml_tensor * src2 = tensor->src[2]; | ||||
|  | ||||
|     struct ggml_init_params iparams = { | ||||
|         /*.mem_size   =*/ 1024*1024*1024, | ||||
| @@ -6798,66 +6794,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ | ||||
|  | ||||
|         ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone); | ||||
|     } | ||||
|     if (src2 != nullptr) { | ||||
|         src2_clone = ggml_dup_tensor(ggml_ctx, src2); | ||||
|  | ||||
|         src2_size = ggml_nbytes(src2); | ||||
|  | ||||
|         src2_buffer = malloc(src2_size); | ||||
|         src2_clone->data = src2_buffer; | ||||
|         if (src2->backend == GGML_BACKEND_TYPE_CPU) { | ||||
|             memcpy(src2_clone->data, src2->data, src2_size); | ||||
|             memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS); | ||||
|         } else if (src2->backend == GGML_BACKEND_TYPE_GPU) { | ||||
|             ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src2->extra; | ||||
|             vk_buffer buf = extra->buffer_gpu.lock(); | ||||
|             uint64_t offset = extra->offset; | ||||
|             if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) { | ||||
|                 for (int i3 = 0; i3 < src2->ne[3]; i3++) { | ||||
|                     for (int i2 = 0; i2 < src2->ne[2]; i2++) { | ||||
|                         const int idx = i3*src2->ne[2] + i2; | ||||
|                         ggml_vk_buffer_read(ctx, buf, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]); | ||||
|                     } | ||||
|                 } | ||||
|  | ||||
|                 src2_clone->nb[0] = src2->nb[0]; | ||||
|                 src2_clone->nb[1] = src2->nb[1]; | ||||
|                 for (int i = 2; i < GGML_MAX_DIMS; i++) { | ||||
|                     src2_clone->nb[i] = src2_clone->nb[i - 1]*src2_clone->ne[i - 1]; | ||||
|                 } | ||||
|             } else { | ||||
|                 if (offset + src2_size >= buf->size) { | ||||
|                     src2_size = buf->size - offset; | ||||
|                 } | ||||
|                 ggml_vk_buffer_read(ctx, buf, offset, src2_clone->data, src2_size); | ||||
|                 memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS); | ||||
|             } | ||||
|         } else { | ||||
|             GGML_ASSERT(false); | ||||
|         } | ||||
|  | ||||
|         if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { | ||||
|             ggml_vk_print_tensor(ctx, src2, "src2"); | ||||
|             std::cerr << "TENSOR CHECK: " << ggml_op_name(src2_clone->op) << " (check " << check_counter << ")" << std::endl; | ||||
|             std::cerr << "src2_clone=" << tensor << " src2_clone->backend: " << src2_clone->backend << " src2_clone->type: " << ggml_type_name(src2_clone->type) << " ne0=" << src2_clone->ne[0] << " nb0=" << src2_clone->nb[0] << " ne1=" << src2_clone->ne[1] << " nb1=" << src2_clone->nb[1] << " ne2=" << src2_clone->ne[2] << " nb2=" << src2_clone->nb[2] << " ne3=" << src2_clone->ne[3] << " nb3=" << src2_clone->nb[3] << std::endl; | ||||
|             if (src2->src[0] != nullptr) { | ||||
|                 std::cerr << "src2->src[0]=" << src2->src[0] << " op=" << ggml_op_name(src2->src[0]->op) << " type=" << ggml_type_name(src2->src[0]->type) << " backend=" << src2->src[0]->backend << " ne0=" << src2->src[0]->ne[0] << " nb0=" << src2->src[0]->nb[0] << " ne1=" << src2->src[0]->ne[1] << " nb1=" << src2->src[0]->nb[1] << " ne2=" << src2->src[0]->ne[2] << " nb2=" << src2->src[0]->nb[2] << " ne3=" << src2->src[0]->ne[3] << " nb3=" << src2->src[0]->nb[3] << std::endl; | ||||
|             } | ||||
|             if (src2->src[1] != nullptr) { | ||||
|                 std::cerr << "src2->src[1]=" << src2->src[1] << " op=" << ggml_op_name(src2->src[1]->op) << " type=" << ggml_type_name(src2->src[1]->type) << " backend=" << src2->src[1]->backend << " ne0=" << src2->src[1]->ne[0] << " nb0=" << src2->src[1]->nb[0] << " ne1=" << src2->src[1]->ne[1] << " nb1=" << src2->src[1]->nb[1] << " ne2=" << src2->src[1]->ne[2] << " nb2=" << src2->src[1]->nb[2] << " ne3=" << src2->src[1]->ne[3] << " nb3=" << src2->src[1]->nb[3] << std::endl; | ||||
|             } | ||||
|             std::cerr << std::endl << "Result:" << std::endl; | ||||
|             ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 0, 0); | ||||
|             std::cerr << std::endl; | ||||
|             std::cerr << std::endl << "Result:" << std::endl; | ||||
|             ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 1, 0); | ||||
|             std::cerr << std::endl; | ||||
|             std::vector<const ggml_tensor *> done; | ||||
|             ggml_vk_print_graph_origin(src2_clone, done); | ||||
|         } | ||||
|  | ||||
|         ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src2", src2_clone); | ||||
|     } | ||||
|  | ||||
|     if (tensor->op == GGML_OP_MUL_MAT) { | ||||
|         tensor_clone = ggml_mul_mat(ggml_ctx, src0_clone, src1_clone); | ||||
| @@ -6877,7 +6813,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ | ||||
|         tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); | ||||
|     } else if (tensor->op == GGML_OP_SOFT_MAX) { | ||||
|         if (src1 != nullptr) { | ||||
|             tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]); | ||||
|             tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]); | ||||
|         } else { | ||||
|             tensor_clone = ggml_soft_max(ggml_ctx, src0_clone); | ||||
|         } | ||||
| @@ -6964,9 +6900,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ | ||||
|     if (src1 != nullptr) { | ||||
|         free(src1_buffer); | ||||
|     } | ||||
|     if (src2 != nullptr) { | ||||
|         free(src2_buffer); | ||||
|     } | ||||
|  | ||||
|     ggml_free(ggml_ctx); | ||||
| } | ||||
| @@ -7026,8 +6959,11 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_ | ||||
|                         } else if (tensor->type == GGML_TYPE_F16) { | ||||
|                             correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0])); | ||||
|                             result  = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0])); | ||||
|                         } else if (tensor->type == GGML_TYPE_I32) { | ||||
|                             correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]); | ||||
|                             result  = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]); | ||||
|                         } else { | ||||
|                             std::cerr << "comp_size=" << comp_size << " but required is " << (i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]) << std::endl; | ||||
|                             std::cerr << "Results check not implemented for type " << ggml_type_name(tensor->type) << std::endl; | ||||
|                         } | ||||
|                     } else { | ||||
|                         std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl; | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 0cc4m
					0cc4m