mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	imatrix : allow processing multiple chunks per batch
* perplexity : simplify filling the batch
This commit is contained in:
		@@ -432,10 +432,9 @@ static void process_logits(
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
 | 
			
		||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, const int32_t n_ctx) {
 | 
			
		||||
    const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
 | 
			
		||||
    GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
 | 
			
		||||
    const int n_ctx = llama_n_ctx(ctx);
 | 
			
		||||
 | 
			
		||||
    auto tim1 = std::chrono::high_resolution_clock::now();
 | 
			
		||||
    fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
 | 
			
		||||
@@ -479,22 +478,28 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
 | 
			
		||||
    double nll = 0.0;
 | 
			
		||||
    double nll2 = 0.0;
 | 
			
		||||
 | 
			
		||||
    fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
 | 
			
		||||
 | 
			
		||||
    std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
 | 
			
		||||
 | 
			
		||||
    const int num_batches = (n_ctx + n_batch - 1) / n_batch;
 | 
			
		||||
    const int n_seq = std::max(1, n_batch / n_ctx);
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
 | 
			
		||||
    GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
 | 
			
		||||
 | 
			
		||||
    llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
 | 
			
		||||
 | 
			
		||||
    std::vector<float> logits;
 | 
			
		||||
    if (params.compute_ppl && num_batches > 1) {
 | 
			
		||||
        logits.reserve((size_t)n_ctx * n_vocab);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < n_chunk; ++i) {
 | 
			
		||||
    fprintf(stderr, "%s: computing over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < n_chunk; i += n_seq) {
 | 
			
		||||
        const int start =     i * n_ctx;
 | 
			
		||||
        const int end   = start + n_ctx;
 | 
			
		||||
 | 
			
		||||
        std::vector<float> logits;
 | 
			
		||||
        const int n_seq_batch = std::min(n_seq, n_chunk - i);
 | 
			
		||||
 | 
			
		||||
        const auto t_start = std::chrono::high_resolution_clock::now();
 | 
			
		||||
 | 
			
		||||
@@ -505,35 +510,50 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
 | 
			
		||||
            const int batch_start = start + j * n_batch;
 | 
			
		||||
            const int batch_size  = std::min(end - batch_start, n_batch);
 | 
			
		||||
 | 
			
		||||
            // save original token and restore it after eval
 | 
			
		||||
            const auto token_org = tokens[batch_start];
 | 
			
		||||
            // clear the batch
 | 
			
		||||
            llama_batch_clear(batch);
 | 
			
		||||
 | 
			
		||||
            // add BOS token for the first batch of each chunk
 | 
			
		||||
            if (add_bos && j == 0) {
 | 
			
		||||
                tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
 | 
			
		||||
            for (int seq = 0; seq < n_seq_batch; seq++) {
 | 
			
		||||
                int seq_start = batch_start + seq*n_ctx;
 | 
			
		||||
 | 
			
		||||
                // save original token and restore it after eval
 | 
			
		||||
                const auto token_org = tokens[seq_start];
 | 
			
		||||
 | 
			
		||||
                // add BOS token for the first batch of each chunk
 | 
			
		||||
                if (add_bos && j == 0) {
 | 
			
		||||
                    tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                for (int k = 0; k < batch_size; ++k) {
 | 
			
		||||
                    // NOTE: specifying all logits to get activations for the output.weight tensor
 | 
			
		||||
                    //       and also for the perplexity calculation.
 | 
			
		||||
                    // TODO: only get outputs when (params.process_output || params.compute_ppl)
 | 
			
		||||
                    //       (not possible when this skips FFN computation of the last layer)
 | 
			
		||||
                    llama_batch_add(batch, tokens[seq_start + k], j*n_batch + k, { seq }, true);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                // restore the original token in case it was set to BOS
 | 
			
		||||
                tokens[seq_start] = token_org;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // TODO: use batch.logits to save computations instead of relying on logits_all == true
 | 
			
		||||
            if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
 | 
			
		||||
            if (llama_decode(ctx, batch)) {
 | 
			
		||||
                fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
			
		||||
                return false;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // restore the original token in case it was set to BOS
 | 
			
		||||
            tokens[batch_start] = token_org;
 | 
			
		||||
 | 
			
		||||
            if (params.compute_ppl && num_batches > 1) {
 | 
			
		||||
                const auto * batch_logits = llama_get_logits(ctx);
 | 
			
		||||
                logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        const auto t_end = std::chrono::high_resolution_clock::now();
 | 
			
		||||
 | 
			
		||||
        if (i == 0) {
 | 
			
		||||
            llama_synchronize(ctx);
 | 
			
		||||
            const auto t_end = std::chrono::high_resolution_clock::now();
 | 
			
		||||
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
 | 
			
		||||
            fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
 | 
			
		||||
            int total_seconds = (int)(t_total * n_chunk);
 | 
			
		||||
            int total_seconds = (int)(t_total*n_chunk/n_seq);
 | 
			
		||||
            if (total_seconds >= 60*60) {
 | 
			
		||||
                fprintf(stderr, "%d hours ", total_seconds / (60*60));
 | 
			
		||||
                total_seconds = total_seconds % (60*60);
 | 
			
		||||
@@ -543,12 +563,21 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
 | 
			
		||||
 | 
			
		||||
        if (params.compute_ppl) {
 | 
			
		||||
            const int first = n_ctx/2;
 | 
			
		||||
            const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
 | 
			
		||||
            process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
 | 
			
		||||
                    workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
 | 
			
		||||
            count += n_ctx - first - 1;
 | 
			
		||||
            for (int seq = 0; seq < n_seq_batch; seq++) {
 | 
			
		||||
                const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
 | 
			
		||||
 | 
			
		||||
            printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
 | 
			
		||||
                llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
 | 
			
		||||
 | 
			
		||||
                process_logits(n_vocab, all_logits + first*n_vocab,
 | 
			
		||||
                        tokens_data, n_ctx - 1 - first,
 | 
			
		||||
                        workers, nll, nll2,
 | 
			
		||||
                        logit_history.data() + start + seq*n_ctx + first,
 | 
			
		||||
                        prob_history.data()  + start + seq*n_ctx + first);
 | 
			
		||||
 | 
			
		||||
                count += n_ctx - first - 1;
 | 
			
		||||
 | 
			
		||||
                printf("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
 | 
			
		||||
            }
 | 
			
		||||
            fflush(stdout);
 | 
			
		||||
 | 
			
		||||
            logits.clear();
 | 
			
		||||
@@ -584,7 +613,22 @@ int main(int argc, char ** argv) {
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    params.n_batch = std::min(params.n_batch, params.n_ctx);
 | 
			
		||||
    const int32_t n_ctx = params.n_ctx;
 | 
			
		||||
 | 
			
		||||
    if (n_ctx <= 0) {
 | 
			
		||||
        fprintf(stderr, "%s: imatrix tool requires '--ctx-size' > 0\n", __func__);
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
        const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
 | 
			
		||||
        const int32_t n_kv = n_seq * n_ctx;
 | 
			
		||||
 | 
			
		||||
        params.n_parallel = n_seq;
 | 
			
		||||
        params.n_ctx      = n_kv;
 | 
			
		||||
 | 
			
		||||
        params.n_batch = std::min(params.n_batch, n_kv);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    g_collector.set_params(params);
 | 
			
		||||
 | 
			
		||||
@@ -632,7 +676,7 @@ int main(int argc, char ** argv) {
 | 
			
		||||
        fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (!compute_imatrix(ctx, params)) {
 | 
			
		||||
    if (!compute_imatrix(ctx, params, n_ctx)) {
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -583,7 +583,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
 | 
			
		||||
 | 
			
		||||
            int n_outputs = 0;
 | 
			
		||||
 | 
			
		||||
            batch.n_tokens = 0;
 | 
			
		||||
            // clear the batch
 | 
			
		||||
            llama_batch_clear(batch);
 | 
			
		||||
 | 
			
		||||
            for (int seq = 0; seq < n_seq_batch; seq++) {
 | 
			
		||||
                int seq_start = batch_start + seq*n_ctx;
 | 
			
		||||
 | 
			
		||||
@@ -596,16 +598,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                for (int k = 0; k < batch_size; ++k) {
 | 
			
		||||
                    const int idx = seq*n_ctx + k;
 | 
			
		||||
                    batch.token   [idx]    = tokens[seq_start + k];
 | 
			
		||||
                    batch.pos     [idx]    = j*n_batch + k;
 | 
			
		||||
                    batch.n_seq_id[idx]    = 1;
 | 
			
		||||
                    batch.seq_id  [idx][0] = seq;
 | 
			
		||||
                    batch.logits  [idx]    = batch.pos[idx] >= first ? 1 : 0;
 | 
			
		||||
 | 
			
		||||
                    n_outputs += batch.logits[idx] != 0;
 | 
			
		||||
                    llama_pos pos = j*n_batch + k;
 | 
			
		||||
                    llama_batch_add(batch, tokens[seq_start + k], pos, { seq }, pos >= first);
 | 
			
		||||
                    n_outputs += (int) (pos >= first);
 | 
			
		||||
                }
 | 
			
		||||
                batch.n_tokens += batch_size;
 | 
			
		||||
 | 
			
		||||
                // restore the original token in case it was set to BOS
 | 
			
		||||
                tokens[seq_start] = token_org;
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user