diff --git a/ggml/src/ggml-cann/aclnn_ops.cpp b/ggml/src/ggml-cann/aclnn_ops.cpp index c8d9854635..606c6d1783 100644 --- a/ggml/src/ggml-cann/aclnn_ops.cpp +++ b/ggml/src/ggml-cann/aclnn_ops.cpp @@ -2544,7 +2544,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) { int64_t shifts[] = { 1 }; int64_t dims[] = { 3 }; - aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims); + aclnn_roll(ctx, acl_input_tensor.get(), acl_input_roll_tensor.get(), shifts, dims); // init [-1, 1, -1, 1, ...] minus_one_scale_buffer = minus_one_scale_allocator.get(); @@ -2564,7 +2564,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) { } int64_t index_num = src0->ne[0]; float value = -1; - aclnn_index_fill_tensor(ctx, acl_minus_one_tensor, dim, index, index_num, value); + aclnn_index_fill_tensor(ctx, acl_minus_one_tensor.get(), dim, index, index_num, value); } else { // roll input: [q0,q1,q2,...] -> // [q_half,q_half+1,...,q_end,q0,q1,...q_half-1] @@ -2576,7 +2576,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) { int64_t shifts[] = { src0->ne[0] / 2 }; int64_t dims[] = { 3 }; - aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims); + aclnn_roll(ctx, acl_input_tensor.get(), acl_input_roll_tensor.get(), shifts, dims); // init [-1, -1, -1, 1, 1,1,...] minus_one_scale_buffer = minus_one_scale_allocator.get(); @@ -2599,7 +2599,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) { first_half_ne, first_half_nb, GGML_MAX_DIMS); bool inplace = true; float scale = -1; - aclnn_muls(ctx, acl_first_half_tensor, scale, nullptr, inplace); + aclnn_muls(ctx, acl_first_half_tensor.get(), scale, nullptr, inplace); } // TODO: n_dims < ne0 @@ -2620,14 +2620,15 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) { ggml_cann_create_tensor(input_roll_buffer, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS); - aclnn_mul(ctx, acl_input_roll_reshape_tensor, acl_minus_one_tensor, acl_input_roll_mul_scale_tensor); + aclnn_mul(ctx, acl_input_roll_reshape_tensor.get(), acl_minus_one_tensor.get(), + acl_input_roll_mul_scale_tensor.get()); // output void * output_fp32_buffer; if (src0->type == GGML_TYPE_F32) { - aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor); - aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor); - aclnn_add(ctx, acl_src, acl_input_roll_mul_scale_tensor, acl_dst); + aclnn_mul(ctx, acl_src.get(), acl_cos_reshape_tensor.get()); + aclnn_mul(ctx, acl_input_roll_mul_scale_tensor.get(), acl_sin_reshape_tensor.get()); + aclnn_add(ctx, acl_src.get(), acl_input_roll_mul_scale_tensor.get(), acl_dst.get()); // TODO: ne0 != n_dims in mode2 } else if (src0->type == GGML_TYPE_F16) { size_t input_fp32_nb[GGML_MAX_DIMS]; @@ -2648,10 +2649,10 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) { output_fp32_buffer = fp32_allocator.get(); acl_tensor_ptr output_fp32_tensor = ggml_cann_create_tensor(output_fp32_buffer, ACL_FLOAT, sizeof(float), dst->ne, input_fp32_nb, GGML_MAX_DIMS); - aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor, input_fp32_tensor1); - aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor, input_fp32_tensor2); - aclnn_add(ctx, input_fp32_tensor1, input_fp32_tensor2, output_fp32_tensor); - aclnn_cast(ctx, output_fp32_tensor, acl_dst, ACL_FLOAT16); + aclnn_mul(ctx, acl_src.get(), acl_cos_reshape_tensor.get(), input_fp32_tensor1.get()); + aclnn_mul(ctx, acl_input_roll_mul_scale_tensor.get(), acl_sin_reshape_tensor.get(), input_fp32_tensor2.get()); + aclnn_add(ctx, input_fp32_tensor1.get(), input_fp32_tensor2.get(), output_fp32_tensor.get()); + aclnn_cast(ctx, output_fp32_tensor.get(), acl_dst.get(), ACL_FLOAT16); } return; #endif