mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-06 09:46:50 +00:00
model: Add support for CogVLM model (#15002)
* Added GGUF mappings for CogVLM model * Add tensor mapping for CogVLM visual encoder * Add CogVLM to conversion script, no vision part yet * Added CogVLM vision model to conversion script * Add graph for CogVLM CLIP model * Add graph for CogVLM * Fixes for CogVLM. Now compiles. * Model now runs * Fixes for cogvlm graph * Account for graph context change after rebase * Changes for whitespace * Changes in convert script according to comments * Switch CogVLM LLM graph to merged QKV tensor * Use rope_type variable instead of direct definition * Change CogVLM CLIP encoder to use SWIGLU * Switch CogVLM CLIP to use merged QKV * Apply rebase edits and remove ggml_cont call that is now unnecessary * clean up --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit is contained in:
@@ -1528,7 +1528,7 @@ class MmprojModel(ModelBase):
|
||||
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
|
||||
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
|
||||
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
|
||||
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
|
||||
|
||||
# preprocessor config
|
||||
image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
|
||||
@@ -9493,6 +9493,37 @@ class KimiVLModel(MmprojModel):
|
||||
|
||||
return [] # skip other tensors
|
||||
|
||||
|
||||
@ModelBase.register("CogVLMForCausalLM")
|
||||
class CogVLMVisionModel(MmprojModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
if not name.startswith("model.vision."):
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("CogVLMForCausalLM")
|
||||
class CogVLMModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.COGVLM
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
# block vision tensors
|
||||
if name.startswith("model.vision."):
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user