mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	CUDA: use arch list for compatibility check (#11775)
* CUDA: use arch list for feature availability check --------- Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
		| @@ -473,7 +473,6 @@ GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128) | ||||
|     240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255, | ||||
| GGML_TABLE_END() | ||||
|  | ||||
| //#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A // lowest compute capability for integer intrinsics | ||||
| GGML_TABLE_BEGIN(uint64_t, ksigns64, 128) | ||||
|     0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff, | ||||
|     0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff, | ||||
| @@ -508,7 +507,6 @@ GGML_TABLE_BEGIN(uint64_t, ksigns64, 128) | ||||
|     0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff, | ||||
|     0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff, | ||||
| GGML_TABLE_END() | ||||
| //#endif | ||||
|  | ||||
|  | ||||
| GGML_TABLE_BEGIN(uint64_t, iq2xxs_grid, 256) | ||||
|   | ||||
| @@ -71,6 +71,47 @@ | ||||
| #define GGML_CUDA_CC_QY1        210 | ||||
| #define GGML_CUDA_CC_QY2        220 | ||||
|  | ||||
| #ifdef __CUDA_ARCH_LIST__ | ||||
| constexpr bool ggml_cuda_has_arch_impl(int) { | ||||
|     return false; | ||||
| } | ||||
|  | ||||
| template<class ... Archs> | ||||
| constexpr bool ggml_cuda_has_arch_impl(const int arch, const int first, Archs... rest) { | ||||
|     return arch == first || ggml_cuda_has_arch_impl(arch, rest...); | ||||
| } | ||||
|  | ||||
| constexpr bool ggml_cuda_has_arch(const int arch) { | ||||
|     return ggml_cuda_has_arch_impl(arch, __CUDA_ARCH_LIST__); | ||||
| } | ||||
|  | ||||
| constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur) { | ||||
|     if (cur == 0) { | ||||
|         GGML_ABORT("ggml was not compiled with any CUDA arch <= %d", arch); | ||||
|     } | ||||
|     return cur; | ||||
| } | ||||
|  | ||||
| template<class ... Archs> | ||||
| constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur, const int first, Archs... rest) { | ||||
|     if (first <= arch && first > cur) { | ||||
|         return ggml_cuda_highest_compiled_arch_impl(arch, first, rest...); | ||||
|     } else { | ||||
|         return ggml_cuda_highest_compiled_arch_impl(arch, cur, rest...); | ||||
|     } | ||||
| } | ||||
|  | ||||
| constexpr int ggml_cuda_highest_compiled_arch(const int arch) { | ||||
|     return ggml_cuda_highest_compiled_arch_impl(arch, 0, __CUDA_ARCH_LIST__); | ||||
| } | ||||
| #else | ||||
| static int ggml_cuda_highest_compiled_arch(const int arch) { | ||||
|     return arch; | ||||
| } | ||||
| #endif // __CUDA_ARCH_LIST__ | ||||
|  | ||||
| // --------------------------------------------------------------------------------------------------------- | ||||
|  | ||||
| #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses | ||||
|  | ||||
| #if defined(_MSC_VER) | ||||
| @@ -162,18 +203,32 @@ typedef float2 dfloat2; | ||||
| #define FLASH_ATTN_AVAILABLE | ||||
| #endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1) | ||||
|  | ||||
| static constexpr bool fast_fp16_available(const int cc) { | ||||
| static bool fp16_available(const int cc) { | ||||
|     return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL; | ||||
| } | ||||
|  | ||||
| static bool fast_fp16_available(const int cc) { | ||||
|     return fp16_available(cc) && cc != 610; | ||||
| } | ||||
|  | ||||
| // To be used for feature selection of external libraries, e.g. cuBLAS. | ||||
| static bool fast_fp16_hardware_available(const int cc) { | ||||
|     return cc >= GGML_CUDA_CC_PASCAL && cc != 610; | ||||
| } | ||||
|  | ||||
| // Any FP16 tensor cores are available. | ||||
| static constexpr bool fp16_mma_available(const int cc) { | ||||
| // Any FP16 tensor core instructions are available for ggml code. | ||||
| static bool fp16_mma_available(const int cc) { | ||||
|     return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA; | ||||
| } | ||||
|  | ||||
| // To be used for feature selection of external libraries, e.g. cuBLAS. | ||||
| static bool fp16_mma_hardware_available(const int cc) { | ||||
|     return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA; | ||||
| } | ||||
|  | ||||
| // Volta technically had FP16 tensor cores but they work very differently compared to Turing and later. | ||||
| static constexpr bool new_mma_available(const int cc) { | ||||
|     return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_TURING; | ||||
| static bool new_mma_available(const int cc) { | ||||
|     return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING; | ||||
| } | ||||
|  | ||||
| static constexpr __device__ int ggml_cuda_get_physical_warp_size() { | ||||
|   | ||||
| @@ -599,7 +599,7 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { | ||||
|         case GGML_TYPE_Q5_1: | ||||
|             return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>; | ||||
|         case GGML_TYPE_Q8_0: | ||||
|             if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= GGML_CUDA_CC_PASCAL) { | ||||
|             if (fp16_available(ggml_cuda_info().devices[ggml_cuda_get_device()].cc)) { | ||||
|                 return dequantize_block_q8_0_f16_cuda; | ||||
|             } | ||||
|             return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>; | ||||
|   | ||||
| @@ -1867,14 +1867,14 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor | ||||
|  | ||||
|             const int cc              = ggml_cuda_info().devices[id].cc; | ||||
|             use_mul_mat_q             = use_mul_mat_q             && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]); | ||||
|             any_gpus_with_slow_fp16   = any_gpus_with_slow_fp16   || !fast_fp16_available(cc); | ||||
|             any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_available(cc); | ||||
|             any_gpus_with_slow_fp16   = any_gpus_with_slow_fp16   || !fast_fp16_hardware_available(cc); | ||||
|             any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available(cc); | ||||
|         } | ||||
|     } else { | ||||
|         const int cc              = ggml_cuda_info().devices[ctx.device].cc; | ||||
|         use_mul_mat_q             = use_mul_mat_q             && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]); | ||||
|         any_gpus_with_slow_fp16   = any_gpus_with_slow_fp16   || !fast_fp16_available(cc); | ||||
|         any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_available(cc); | ||||
|         any_gpus_with_slow_fp16   = any_gpus_with_slow_fp16   || !fast_fp16_hardware_available(cc); | ||||
|         any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available(cc); | ||||
|     } | ||||
|  | ||||
|     // debug helpers | ||||
| @@ -3205,8 +3205,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g | ||||
|             if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) { | ||||
|                 return true; | ||||
|             } | ||||
|             const int cc = ggml_cuda_info().devices[dev_ctx->device].cc; | ||||
|             return cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16; | ||||
|             return fp16_mma_available(ggml_cuda_info().devices[dev_ctx->device].cc) && | ||||
|                 op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16; | ||||
|         } | ||||
|         case GGML_OP_CROSS_ENTROPY_LOSS: | ||||
|         case GGML_OP_CROSS_ENTROPY_LOSS_BACK: | ||||
|   | ||||
| @@ -18,7 +18,7 @@ void ggml_cuda_op_mul_mat_q( | ||||
|     const int64_t stride00 = ne00 / ggml_blck_size(src0->type); | ||||
|  | ||||
|     int id = ggml_cuda_get_device(); | ||||
|     const int compute_capability = ggml_cuda_info().devices[id].cc; | ||||
|     const int cc = ggml_cuda_info().devices[id].cc; | ||||
|  | ||||
|     // the main device has a larger memory buffer to hold the results from all GPUs | ||||
|     // nrows_dst == nrows of the matrix that the kernel writes into | ||||
| @@ -27,7 +27,8 @@ void ggml_cuda_op_mul_mat_q( | ||||
|     // The stream-k decomposition is only faster for recent NVIDIA GPUs. | ||||
|     // Also its fixup needs to allocate a temporary buffer in the memory pool. | ||||
|     // There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer. | ||||
|     const bool use_stream_k = compute_capability >= GGML_CUDA_CC_VOLTA && compute_capability < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11; | ||||
|     const bool use_stream_k = ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && | ||||
|         cc < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11; | ||||
|     const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k}; | ||||
|  | ||||
|     switch (src0->type) { | ||||
| @@ -136,7 +137,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) { | ||||
|         return true; | ||||
|     } | ||||
|  | ||||
|     if (cc < GGML_CUDA_CC_DP4A) { | ||||
|     if (ggml_cuda_highest_compiled_arch(cc) < GGML_CUDA_CC_DP4A) { | ||||
|         return false; | ||||
|     } | ||||
|  | ||||
| @@ -145,7 +146,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) { | ||||
| #endif //GGML_CUDA_FORCE_MMQ | ||||
|  | ||||
|     if (cc < GGML_CUDA_CC_OFFSET_AMD) { | ||||
|         return cc < GGML_CUDA_CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; | ||||
|         return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; | ||||
|     } | ||||
|  | ||||
|     return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc) && !GGML_CUDA_CC_IS_GCN(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; | ||||
|   | ||||
| @@ -86,12 +86,13 @@ struct tile_x_sizes { | ||||
|     int sc; | ||||
| }; | ||||
|  | ||||
| static constexpr int get_mmq_x_max_host(const int cc) { | ||||
| static int get_mmq_x_max_host(const int cc) { | ||||
|     return new_mma_available(cc) ? 128 : | ||||
|         ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? | ||||
| #ifdef GGML_CUDA_FORCE_MMQ | ||||
|         cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? 128                     : 64; | ||||
|             128                     : 64; | ||||
| #else | ||||
|         cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64; | ||||
|             MMQ_DP4A_MAX_BATCH_SIZE : 64; | ||||
| #endif // GGML_CUDA_FORCE_MMQ | ||||
| } | ||||
|  | ||||
| @@ -119,8 +120,9 @@ static constexpr __device__ int get_mmq_x_max_device() { | ||||
| #endif // NEW_MMA_AVAILABLE | ||||
| } | ||||
|  | ||||
| static constexpr int get_mmq_y_host(const int cc) { | ||||
|     return cc >= GGML_CUDA_CC_OFFSET_AMD ? (GGML_CUDA_CC_IS_RDNA1(cc)  ? 64 : 128) : (cc >= GGML_CUDA_CC_VOLTA ? 128 : 64); | ||||
| static int get_mmq_y_host(const int cc) { | ||||
|     return cc >= GGML_CUDA_CC_OFFSET_AMD ? (GGML_CUDA_CC_IS_RDNA1(cc) ? 64 : 128) : | ||||
|         (ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA ? 128 : 64); | ||||
| } | ||||
|  | ||||
| static constexpr __device__ int get_mmq_y_device() { | ||||
| @@ -2828,7 +2830,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda | ||||
|     const int mmq_x_max = get_mmq_x_max_host(cc); | ||||
|     const int mmq_y = get_mmq_y_host(cc); | ||||
|     const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y; | ||||
|     const bool use_stream_k = cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD; | ||||
|     const bool use_stream_k = ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD; | ||||
|  | ||||
|     int mmq_x_best  = 0; | ||||
|     int nparts_best = INT_MAX; | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Johannes Gäßler
					Johannes Gäßler