model : add grok-2 support (#15539)

* add grok-2 support

* type fix

* type fix

* type fix

* "fix" vocab for invalid sequences

* fix expert tensor mapping and spaces in vocab

* add chat template

* fix norm tensor mapping

* rename layer_out_norm to ffn_post_norm

* ensure ffn_post_norm is mapped

* fix experts merging

* remove erroneous FFN_GATE entry

* concatenate split tensors and add more metadata

* process all expert layers and try cat instead of hstack

* add support for community BPE vocab

* fix expert feed forward length and ffn_down concat

* commit this too

* add ffn_up/gate/down, unsure if sequence is right

* add ffn_gate/down/up to tensor names

* correct residual moe (still not working)

* mess--

* fix embedding scale being applied twice

* add built in chat template

* change beta fast for grok if default value

* remove spm vocab in favor of community bpe vocab

* change attention temp length metadata type to integer

* update attention temp length metadata

* remove comment

* replace M_SQRT2 with std::sqrt(2)

* add yarn metadata, move defaults to hparams
This commit is contained in:
Sigbjørn Skjæret
2025-09-14 23:00:59 +02:00
committed by GitHub
parent 6c019cb04e
commit b8e09f08b9
16 changed files with 281 additions and 96 deletions

View File

@@ -735,6 +735,9 @@ class TextModel(ModelBase):
if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
# ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
res = "qwen2"
if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
# ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
res = "grok-2"
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
res = "llama-bpe"
@@ -2682,12 +2685,20 @@ class BitnetModel(TextModel):
yield (new_name, data_torch)
@ModelBase.register("GrokForCausalLM")
@ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
class GrokModel(TextModel):
model_arch = gguf.MODEL_ARCH.GROK
def set_vocab(self):
self._set_vocab_sentencepiece()
if (self.dir_model / 'tokenizer.model').is_file():
self._set_vocab_sentencepiece()
return
if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
sys.exit(1)
self._set_vocab_gpt2()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@@ -2695,11 +2706,46 @@ class GrokModel(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
_experts: list[dict[str, Tensor]] | None = None
self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
if (rope_dim := self.hparams.get("head_dim")) is None:
rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
# Treat "original" as "yarn", seems to have been a mistake
if self.hparams.get("rope_type") in ("yarn", "original"):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
if temp_len := self.hparams.get("attn_temperature_len"):
self.gguf_writer.add_attn_temperature_length(temp_len)
self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
_experts: list[dict[str, list[Tensor]]] | None = None
_cur_expert = ""
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
tensors: list[tuple[str, Tensor]] = []
is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
if not is_expert:
tensors.append((self.map_tensor_name(name), data_torch))
# process the experts separately
if name.find(".moe.") != -1:
if is_expert or self._cur_expert:
n_experts = self.hparams["num_local_experts"]
assert bid is not None
@@ -2707,32 +2753,41 @@ class GrokModel(TextModel):
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for wid in ["linear", "linear_1", "linear_v"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
# concatenate split tensors
if name in self._experts[bid]:
self._cur_expert = name
self._experts[bid][name].append(data_torch)
return []
elif is_expert:
self._cur_expert = name
self._experts[bid][name] = [data_torch]
return []
else:
self._cur_expert = ""
return [(self.map_tensor_name(name), data_torch)]
for bid in range(self.block_count):
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
if ename not in self._experts[bid]:
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
tensor_list = self._experts[bid][ename]
datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
new_name = self.map_tensor_name(merged_name)
yield (new_name, data_torch)
yield from tensors
@ModelBase.register("DbrxForCausalLM")