mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	Move llama_context setup + perplexity back to main.cpp
Signed-off-by: Thiago Padilha <thiago@padilha.cc>
This commit is contained in:
		
							
								
								
									
										124
									
								
								main.cpp
									
									
									
									
									
								
							
							
						
						
									
										124
									
								
								main.cpp
									
									
									
									
									
								
							@@ -1,5 +1,127 @@
 | 
			
		||||
#include "run.h"
 | 
			
		||||
#include "ggml.h"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
std::vector<double> softmax(const std::vector<float>& logits) {
 | 
			
		||||
    std::vector<double> probs(logits.size());
 | 
			
		||||
    float max_logit = logits[0];
 | 
			
		||||
    for (float v : logits) max_logit = std::max(max_logit, v);
 | 
			
		||||
    double sum_exp = 0.0;
 | 
			
		||||
    for (size_t i = 0; i < logits.size(); i++) {
 | 
			
		||||
        // Subtract the maximum logit value from the current logit value for numerical stability
 | 
			
		||||
        float logit = logits[i] - max_logit;
 | 
			
		||||
        double exp_logit = std::exp(logit);
 | 
			
		||||
        sum_exp += exp_logit;
 | 
			
		||||
        probs[i] = exp_logit;
 | 
			
		||||
    }
 | 
			
		||||
    for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
 | 
			
		||||
    return probs;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void perplexity(llama_context * ctx, const gpt_params & params) {
 | 
			
		||||
    // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
 | 
			
		||||
    // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
 | 
			
		||||
    // Output: `perplexity: 13.5106 [114/114]`
 | 
			
		||||
    auto tokens = ::llama_tokenize(ctx, params.prompt, true);
 | 
			
		||||
 | 
			
		||||
    int count = 0;
 | 
			
		||||
    double nll = 0.0;
 | 
			
		||||
    int seq_count = tokens.size() / params.n_ctx;
 | 
			
		||||
 | 
			
		||||
    fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < seq_count; ++i) {
 | 
			
		||||
        int start = i * params.n_ctx;
 | 
			
		||||
        int end = start + params.n_ctx - 1;
 | 
			
		||||
        std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
 | 
			
		||||
        auto start_t = std::chrono::high_resolution_clock::now();
 | 
			
		||||
        if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
 | 
			
		||||
            fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
        auto end_t = std::chrono::high_resolution_clock::now();
 | 
			
		||||
        if (i == 0) {
 | 
			
		||||
            double seconds = std::chrono::duration<double>(end_t - start_t).count();
 | 
			
		||||
            printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
 | 
			
		||||
        }
 | 
			
		||||
        // We get the logits for all the tokens in the context window (params.n_ctx)
 | 
			
		||||
        // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
 | 
			
		||||
        // calculate the perplexity over the last half the window (so the model always has
 | 
			
		||||
        // some context to predict the token).
 | 
			
		||||
        //
 | 
			
		||||
        // We rely on the fact that attention in the forward pass only looks at previous
 | 
			
		||||
        // tokens here, so the logits returned for each token are an accurate representation
 | 
			
		||||
        // of what the model would have predicted at that point.
 | 
			
		||||
        //
 | 
			
		||||
        // Example, we have a context window of 512, we will compute perplexity for each of the
 | 
			
		||||
        // last 256 tokens.  Then, we split the input up into context window size chunks to
 | 
			
		||||
        // process the entire prompt.
 | 
			
		||||
 | 
			
		||||
        auto logits = llama_get_logits(ctx);
 | 
			
		||||
        for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
 | 
			
		||||
            // Calculate probability of next token, given the previous ones.
 | 
			
		||||
            int n_vocab = llama_n_vocab(ctx);
 | 
			
		||||
            std::vector<float> tok_logits(
 | 
			
		||||
                logits + j * n_vocab,
 | 
			
		||||
                logits + (j + 1) * n_vocab);
 | 
			
		||||
            double prob = softmax(tok_logits)[tokens[start + j + 1]];
 | 
			
		||||
            nll += -std::log(prob);
 | 
			
		||||
            ++count;
 | 
			
		||||
        }
 | 
			
		||||
        // perplexity is e^(average negative log-likelihood)
 | 
			
		||||
        printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
 | 
			
		||||
        fflush(stdout);
 | 
			
		||||
    }
 | 
			
		||||
    printf("\n");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main(int argc, char ** argv) {
 | 
			
		||||
    return run(argc, argv);
 | 
			
		||||
    // has to be called once at the start of the program to init ggml stuff
 | 
			
		||||
    ggml_time_init();
 | 
			
		||||
 | 
			
		||||
    gpt_params params;
 | 
			
		||||
    params.model = "models/llama-7B/ggml-model.bin";
 | 
			
		||||
 | 
			
		||||
    if (gpt_params_parse(argc, argv, params) == false) {
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.n_ctx > 2048) {
 | 
			
		||||
        fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
 | 
			
		||||
                "expect poor results\n", __func__, params.n_ctx);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    llama_context * ctx;
 | 
			
		||||
 | 
			
		||||
    // load the model
 | 
			
		||||
    {
 | 
			
		||||
        auto lparams = llama_context_default_params();
 | 
			
		||||
 | 
			
		||||
        lparams.n_ctx      = params.n_ctx;
 | 
			
		||||
        lparams.n_parts    = params.n_parts;
 | 
			
		||||
        lparams.seed       = params.seed;
 | 
			
		||||
        lparams.f16_kv     = params.memory_f16;
 | 
			
		||||
        lparams.logits_all = params.perplexity;
 | 
			
		||||
 | 
			
		||||
        ctx = llama_init_from_file(params.model.c_str(), lparams);
 | 
			
		||||
 | 
			
		||||
        if (ctx == NULL) {
 | 
			
		||||
            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
 | 
			
		||||
            return 1;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // print system information
 | 
			
		||||
    {
 | 
			
		||||
        fprintf(stderr, "\n");
 | 
			
		||||
        fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | 
			
		||||
                params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.perplexity) {
 | 
			
		||||
        perplexity(ctx, params);
 | 
			
		||||
        exit(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return run(ctx, params);
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										122
									
								
								run.cpp
									
									
									
									
									
								
							
							
						
						
									
										122
									
								
								run.cpp
									
									
									
									
									
								
							@@ -1,5 +1,4 @@
 | 
			
		||||
#include "utils.h"
 | 
			
		||||
#include "ggml.h"
 | 
			
		||||
#include "llama.h"
 | 
			
		||||
 | 
			
		||||
#include <cassert>
 | 
			
		||||
@@ -65,79 +64,6 @@ void set_console_state(console_state new_st)
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::vector<double> softmax(const std::vector<float>& logits) {
 | 
			
		||||
    std::vector<double> probs(logits.size());
 | 
			
		||||
    float max_logit = logits[0];
 | 
			
		||||
    for (float v : logits) max_logit = std::max(max_logit, v);
 | 
			
		||||
    double sum_exp = 0.0;
 | 
			
		||||
    for (size_t i = 0; i < logits.size(); i++) {
 | 
			
		||||
        // Subtract the maximum logit value from the current logit value for numerical stability
 | 
			
		||||
        float logit = logits[i] - max_logit;
 | 
			
		||||
        double exp_logit = std::exp(logit);
 | 
			
		||||
        sum_exp += exp_logit;
 | 
			
		||||
        probs[i] = exp_logit;
 | 
			
		||||
    }
 | 
			
		||||
    for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
 | 
			
		||||
    return probs;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void perplexity(llama_context * ctx, const gpt_params & params) {
 | 
			
		||||
    // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
 | 
			
		||||
    // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
 | 
			
		||||
    // Output: `perplexity: 13.5106 [114/114]`
 | 
			
		||||
    auto tokens = ::llama_tokenize(ctx, params.prompt, true);
 | 
			
		||||
 | 
			
		||||
    int count = 0;
 | 
			
		||||
    double nll = 0.0;
 | 
			
		||||
    int seq_count = tokens.size() / params.n_ctx;
 | 
			
		||||
 | 
			
		||||
    fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < seq_count; ++i) {
 | 
			
		||||
        int start = i * params.n_ctx;
 | 
			
		||||
        int end = start + params.n_ctx - 1;
 | 
			
		||||
        std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
 | 
			
		||||
        auto start_t = std::chrono::high_resolution_clock::now();
 | 
			
		||||
        if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
 | 
			
		||||
            fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
        auto end_t = std::chrono::high_resolution_clock::now();
 | 
			
		||||
        if (i == 0) {
 | 
			
		||||
            double seconds = std::chrono::duration<double>(end_t - start_t).count();
 | 
			
		||||
            printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
 | 
			
		||||
        }
 | 
			
		||||
        // We get the logits for all the tokens in the context window (params.n_ctx)
 | 
			
		||||
        // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
 | 
			
		||||
        // calculate the perplexity over the last half the window (so the model always has
 | 
			
		||||
        // some context to predict the token).
 | 
			
		||||
        //
 | 
			
		||||
        // We rely on the fact that attention in the forward pass only looks at previous
 | 
			
		||||
        // tokens here, so the logits returned for each token are an accurate representation
 | 
			
		||||
        // of what the model would have predicted at that point.
 | 
			
		||||
        //
 | 
			
		||||
        // Example, we have a context window of 512, we will compute perplexity for each of the
 | 
			
		||||
        // last 256 tokens.  Then, we split the input up into context window size chunks to
 | 
			
		||||
        // process the entire prompt.
 | 
			
		||||
 | 
			
		||||
        auto logits = llama_get_logits(ctx);
 | 
			
		||||
        for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
 | 
			
		||||
            // Calculate probability of next token, given the previous ones.
 | 
			
		||||
            int n_vocab = llama_n_vocab(ctx);
 | 
			
		||||
            std::vector<float> tok_logits(
 | 
			
		||||
                logits + j * n_vocab,
 | 
			
		||||
                logits + (j + 1) * n_vocab);
 | 
			
		||||
            double prob = softmax(tok_logits)[tokens[start + j + 1]];
 | 
			
		||||
            nll += -std::log(prob);
 | 
			
		||||
            ++count;
 | 
			
		||||
        }
 | 
			
		||||
        // perplexity is e^(average negative log-likelihood)
 | 
			
		||||
        printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
 | 
			
		||||
        fflush(stdout);
 | 
			
		||||
    }
 | 
			
		||||
    printf("\n");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static bool is_interacting = false;
 | 
			
		||||
 | 
			
		||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | 
			
		||||
@@ -154,21 +80,7 @@ void sigint_handler(int signo) {
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
int run(int argc, char ** argv) {
 | 
			
		||||
    // has to be called once at the start of the program to init ggml stuff
 | 
			
		||||
    ggml_time_init();
 | 
			
		||||
 | 
			
		||||
    gpt_params params;
 | 
			
		||||
    params.model = "models/llama-7B/ggml-model.bin";
 | 
			
		||||
 | 
			
		||||
    if (gpt_params_parse(argc, argv, params) == false) {
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.n_ctx > 2048) {
 | 
			
		||||
        fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
 | 
			
		||||
                "expect poor results\n", __func__, params.n_ctx);
 | 
			
		||||
    }
 | 
			
		||||
int run(llama_context * ctx, gpt_params params) {
 | 
			
		||||
 | 
			
		||||
    if (params.seed <= 0) {
 | 
			
		||||
        params.seed = time(NULL);
 | 
			
		||||
@@ -188,33 +100,6 @@ int run(int argc, char ** argv) {
 | 
			
		||||
//    params.prompt = R"(// this function checks if the number n is prime
 | 
			
		||||
//bool is_prime(int n) {)";
 | 
			
		||||
 | 
			
		||||
    llama_context * ctx;
 | 
			
		||||
 | 
			
		||||
    // load the model
 | 
			
		||||
    {
 | 
			
		||||
        auto lparams = llama_context_default_params();
 | 
			
		||||
 | 
			
		||||
        lparams.n_ctx      = params.n_ctx;
 | 
			
		||||
        lparams.n_parts    = params.n_parts;
 | 
			
		||||
        lparams.seed       = params.seed;
 | 
			
		||||
        lparams.f16_kv     = params.memory_f16;
 | 
			
		||||
        lparams.logits_all = params.perplexity;
 | 
			
		||||
 | 
			
		||||
        ctx = llama_init_from_file(params.model.c_str(), lparams);
 | 
			
		||||
 | 
			
		||||
        if (ctx == NULL) {
 | 
			
		||||
            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
 | 
			
		||||
            return 1;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // print system information
 | 
			
		||||
    {
 | 
			
		||||
        fprintf(stderr, "\n");
 | 
			
		||||
        fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | 
			
		||||
                params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // determine the required inference memory per token:
 | 
			
		||||
    // TODO: better way to do that
 | 
			
		||||
    {
 | 
			
		||||
@@ -222,11 +107,6 @@ int run(int argc, char ** argv) {
 | 
			
		||||
        llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.perplexity) {
 | 
			
		||||
        perplexity(ctx, params);
 | 
			
		||||
        exit(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int n_past = 0;
 | 
			
		||||
 | 
			
		||||
    // Add a space in front of the first character to match OG llama tokenizer behavior
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user