llama : add support for qwen3 reranker (#15824)

This commit is contained in:
Douglas Hanley
2025-09-25 03:53:09 -05:00
committed by GitHub
parent dfcd53f7ec
commit b5bd037832
9 changed files with 166 additions and 78 deletions

View File

@@ -5093,21 +5093,15 @@ int main(int argc, char ** argv) {
return;
}
std::vector<server_tokens> tokenized_queries = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, query, /* add_special */ false, true);
if (tokenized_queries.size() != 1) {
res_error(res, format_error_response("\"query\" must contain only a single prompt", ERROR_TYPE_INVALID_REQUEST));
}
// create and queue the task
json responses = json::array();
bool error = false;
std::unordered_set<int> task_ids;
{
std::vector<server_task> tasks;
auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, documents, /* add_special */ false, true);
tasks.reserve(tokenized_docs.size());
for (size_t i = 0; i < tokenized_docs.size(); i++) {
auto tmp = format_rerank(ctx_server.vocab, tokenized_queries[0], tokenized_docs[i]);
tasks.reserve(documents.size());
for (size_t i = 0; i < documents.size(); i++) {
auto tmp = format_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]);
server_task task = server_task(SERVER_TASK_TYPE_RERANK);
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;

View File

@@ -1368,34 +1368,6 @@ static std::string fnv_hash(const uint8_t * data, size_t len) {
return std::to_string(hash);
}
// format rerank task: [BOS]query[EOS][SEP]doc[EOS].
static server_tokens format_rerank(const struct llama_vocab * vocab, server_tokens & query, server_tokens & doc) {
server_tokens result = {};
// Get EOS token - use SEP token as fallback if EOS is not available
llama_token eos_token = llama_vocab_eos(vocab);
if (eos_token == LLAMA_TOKEN_NULL) {
eos_token = llama_vocab_sep(vocab);
}
if (llama_vocab_get_add_bos(vocab)) {
result.push_back(llama_vocab_bos(vocab));
}
result.push_back(query);
if (llama_vocab_get_add_eos(vocab)) {
result.push_back(eos_token);
}
if (llama_vocab_get_add_sep(vocab)) {
result.push_back(llama_vocab_sep(vocab));
}
result.push_back(doc);
if (llama_vocab_get_add_eos(vocab)) {
result.push_back(eos_token);
}
return result;
}
static server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector<raw_buffer> files) {
mtmd::bitmaps bitmaps;
for (auto & file : files) {
@@ -1501,3 +1473,43 @@ static std::vector<server_tokens> tokenize_input_prompts(const llama_vocab * voc
}
return result;
}
// format rerank task: [BOS]query[EOS][SEP]doc[EOS].
static server_tokens format_rerank(const struct llama_model * model, const struct llama_vocab * vocab, mtmd_context * mctx, const std::string & query, const std::string & doc) {
server_tokens result = {};
const char * rerank_prompt = llama_model_chat_template(model, "rerank");
if (rerank_prompt != nullptr) {
std::string prompt = rerank_prompt;
string_replace_all(prompt, "{query}" , query);
string_replace_all(prompt, "{document}", doc );
server_tokens tokens = tokenize_input_subprompt(vocab, mctx, prompt, false, true);
result.push_back(tokens);
} else {
// Get EOS token - use SEP token as fallback if EOS is not available
server_tokens query_tokens = tokenize_input_subprompt(vocab, mctx, query, false, false);
server_tokens doc_tokens = tokenize_input_subprompt(vocab, mctx, doc, false, false);
llama_token eos_token = llama_vocab_eos(vocab);
if (eos_token == LLAMA_TOKEN_NULL) {
eos_token = llama_vocab_sep(vocab);
}
if (llama_vocab_get_add_bos(vocab)) {
result.push_back(llama_vocab_bos(vocab));
}
result.push_back(query_tokens);
if (llama_vocab_get_add_eos(vocab)) {
result.push_back(eos_token);
}
if (llama_vocab_get_add_sep(vocab)) {
result.push_back(llama_vocab_sep(vocab));
}
result.push_back(doc_tokens);
if (llama_vocab_get_add_eos(vocab)) {
result.push_back(eos_token);
}
}
return result;
}