llama : add support for qwen3 reranker (#15824)

This commit is contained in:
Douglas Hanley
2025-09-25 03:53:09 -05:00
committed by GitHub
parent dfcd53f7ec
commit b5bd037832
9 changed files with 166 additions and 78 deletions

View File

@@ -95,8 +95,13 @@ int main(int argc, char ** argv) {
params.n_batch = params.n_ctx;
}
// For non-causal models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
// for non-causal models, batch size must be equal to ubatch size
if (params.attention_type != LLAMA_ATTENTION_TYPE_CAUSAL) {
params.n_ubatch = params.n_batch;
}
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
llama_backend_init();
llama_numa_init(params.numa);
@@ -144,6 +149,7 @@ int main(int argc, char ** argv) {
// get added sep and eos token, if any
const std::string added_sep_token = llama_vocab_get_add_sep(vocab) ? llama_vocab_get_text(vocab, llama_vocab_sep(vocab)) : "";
const std::string added_eos_token = llama_vocab_get_add_eos(vocab) ? llama_vocab_get_text(vocab, llama_vocab_eos(vocab)) : "";
const char * rerank_prompt = llama_model_chat_template(model, "rerank");
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
@@ -153,21 +159,28 @@ int main(int argc, char ** argv) {
// split classification pairs and insert expected separator tokens
if (pooling_type == LLAMA_POOLING_TYPE_RANK && prompt.find(params.cls_sep) != std::string::npos) {
std::vector<std::string> pairs = split_lines(prompt, params.cls_sep);
std::string final_prompt;
for (size_t i = 0; i < pairs.size(); i++) {
final_prompt += pairs[i];
if (i != pairs.size() - 1) {
if (!added_eos_token.empty()) {
final_prompt += added_eos_token;
}
if (!added_sep_token.empty()) {
final_prompt += added_sep_token;
if (rerank_prompt != nullptr) {
const std::string query = pairs[0];
const std::string doc = pairs[1];
std::string final_prompt = rerank_prompt;
string_replace_all(final_prompt, "{query}" , query);
string_replace_all(final_prompt, "{document}", doc );
inp = common_tokenize(vocab, final_prompt, true, true);
} else {
std::string final_prompt;
for (size_t i = 0; i < pairs.size(); i++) {
final_prompt += pairs[i];
if (i != pairs.size() - 1) {
if (!added_eos_token.empty()) {
final_prompt += added_eos_token;
}
if (!added_sep_token.empty()) {
final_prompt += added_sep_token;
}
}
}
inp = common_tokenize(ctx, final_prompt, true, true);
}
inp = common_tokenize(ctx, final_prompt, true, true);
} else {
inp = common_tokenize(ctx, prompt, true, true);
}
@@ -229,7 +242,7 @@ int main(int argc, char ** argv) {
const uint64_t n_toks = inp.size();
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
if (batch.n_tokens + n_toks > n_batch || s >= n_seq_max) {
float * out = emb + e * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;