mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-30 08:42:00 +00:00
model-conversion : add extra debugging support for model conversion (#15877)
* feat: Extra debugging support for model conversion - added BF16 support for llama-callback-eval and support for dumping intermediate steps in run-org-model.py
This commit is contained in:
committed by
GitHub
parent
7057faf64b
commit
acc1b008cf
@@ -28,6 +28,15 @@ static std::string ggml_ne_string(const ggml_tensor * t) {
|
|||||||
return str;
|
return str;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
||||||
|
union {
|
||||||
|
float f;
|
||||||
|
uint32_t i;
|
||||||
|
} u;
|
||||||
|
u.i = (uint32_t)h.bits << 16;
|
||||||
|
return u.f;
|
||||||
|
}
|
||||||
|
|
||||||
static float ggml_get_float_value(uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
|
static float ggml_get_float_value(uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
|
||||||
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
||||||
float v;
|
float v;
|
||||||
@@ -43,6 +52,8 @@ static float ggml_get_float_value(uint8_t * data, ggml_type type, const size_t *
|
|||||||
v = (float) *(int16_t *) &data[i];
|
v = (float) *(int16_t *) &data[i];
|
||||||
} else if (type == GGML_TYPE_I8) {
|
} else if (type == GGML_TYPE_I8) {
|
||||||
v = (float) *(int8_t *) &data[i];
|
v = (float) *(int8_t *) &data[i];
|
||||||
|
} else if (type == GGML_TYPE_BF16) {
|
||||||
|
v = ggml_compute_bf16_to_fp32(*(ggml_bf16_t *) &data[i]);
|
||||||
} else {
|
} else {
|
||||||
GGML_ABORT("fatal error");
|
GGML_ABORT("fatal error");
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
torch~=2.6.0
|
torch
|
||||||
torchvision~=0.21.0
|
torchvision
|
||||||
transformers~=4.55.0
|
transformers
|
||||||
huggingface-hub~=0.34.0
|
huggingface-hub
|
||||||
|
accelerate
|
||||||
|
|||||||
@@ -9,15 +9,134 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
|||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
### If you want to dump RoPE activations, apply this monkey patch to the model
|
||||||
|
### class from Transformers that you are running (replace apertus.modeling_apertus
|
||||||
|
### with the proper package and class for your model
|
||||||
|
### === START ROPE DEBUG ===
|
||||||
|
# from transformers.models.apertus.modeling_apertus import apply_rotary_pos_emb
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description='Process model with specified path')
|
# orig_rope = apply_rotary_pos_emb
|
||||||
parser.add_argument('--model-path', '-m', help='Path to the model')
|
# torch.set_printoptions(threshold=float('inf'))
|
||||||
|
# torch.set_printoptions(precision=6, sci_mode=False)
|
||||||
|
|
||||||
|
# def debug_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
||||||
|
# # log inputs
|
||||||
|
# summarize(q, "RoPE.q_in")
|
||||||
|
# summarize(k, "RoPE.k_in")
|
||||||
|
|
||||||
|
# # call original
|
||||||
|
# q_out, k_out = orig_rope(q, k, cos, sin, position_ids, unsqueeze_dim)
|
||||||
|
|
||||||
|
# # log outputs
|
||||||
|
# summarize(q_out, "RoPE.q_out")
|
||||||
|
# summarize(k_out, "RoPE.k_out")
|
||||||
|
|
||||||
|
# return q_out, k_out
|
||||||
|
|
||||||
|
# # Patch it
|
||||||
|
# import transformers.models.apertus.modeling_apertus as apertus_mod # noqa: E402
|
||||||
|
# apertus_mod.apply_rotary_pos_emb = debug_rope
|
||||||
|
### == END ROPE DEBUG ===
|
||||||
|
|
||||||
|
|
||||||
|
def summarize(tensor: torch.Tensor, name: str, max_seq: int = 3, max_vals: int = 3):
|
||||||
|
"""
|
||||||
|
Print a tensor in llama.cpp debug style.
|
||||||
|
|
||||||
|
Supports:
|
||||||
|
- 2D tensors (seq, hidden)
|
||||||
|
- 3D tensors (batch, seq, hidden)
|
||||||
|
- 4D tensors (batch, seq, heads, dim_per_head) via flattening heads × dim_per_head
|
||||||
|
|
||||||
|
Shows first and last max_vals of each vector per sequence position.
|
||||||
|
"""
|
||||||
|
t = tensor.detach().to(torch.float32).cpu()
|
||||||
|
|
||||||
|
# Determine dimensions
|
||||||
|
if t.ndim == 3:
|
||||||
|
_, s, _ = t.shape
|
||||||
|
elif t.ndim == 2:
|
||||||
|
_, s = 1, t.shape[0]
|
||||||
|
t = t.unsqueeze(0)
|
||||||
|
elif t.ndim == 4:
|
||||||
|
_, s, _, _ = t.shape
|
||||||
|
else:
|
||||||
|
print(f"Skipping tensor due to unsupported dimensions: {t.ndim}")
|
||||||
|
return
|
||||||
|
|
||||||
|
ten_shape = t.shape
|
||||||
|
|
||||||
|
print(f"ggml_debug: {name} = (f32) ... = {{{ten_shape}}}")
|
||||||
|
print(" [")
|
||||||
|
print(" [")
|
||||||
|
|
||||||
|
# Determine indices for first and last sequences
|
||||||
|
first_indices = list(range(min(s, max_seq)))
|
||||||
|
last_indices = list(range(max(0, s - max_seq), s))
|
||||||
|
|
||||||
|
# Check if there's an overlap between first and last indices or if we're at the edge case of s = 2 * max_seq
|
||||||
|
has_overlap = bool(set(first_indices) & set(last_indices)) or (max_seq * 2 == s)
|
||||||
|
|
||||||
|
# Combine indices
|
||||||
|
if has_overlap:
|
||||||
|
# If there's overlap, just use the combined unique indices
|
||||||
|
indices = sorted(list(set(first_indices + last_indices)))
|
||||||
|
separator_index = None
|
||||||
|
else:
|
||||||
|
# If no overlap, we'll add a separator between first and last sequences
|
||||||
|
indices = first_indices + last_indices
|
||||||
|
separator_index = len(first_indices)
|
||||||
|
|
||||||
|
for i, si in enumerate(indices):
|
||||||
|
# Add separator if needed
|
||||||
|
if separator_index is not None and i == separator_index:
|
||||||
|
print(" ...")
|
||||||
|
|
||||||
|
# Extract appropriate slice
|
||||||
|
vec = t[0, si]
|
||||||
|
if vec.ndim == 2: # 4D case: flatten heads × dim_per_head
|
||||||
|
flat = vec.flatten().tolist()
|
||||||
|
else: # 2D or 3D case
|
||||||
|
flat = vec.tolist()
|
||||||
|
|
||||||
|
# First and last slices
|
||||||
|
first = flat[:max_vals]
|
||||||
|
last = flat[-max_vals:] if len(flat) >= max_vals else flat
|
||||||
|
first_str = ", ".join(f"{v:12.4f}" for v in first)
|
||||||
|
last_str = ", ".join(f"{v:12.4f}" for v in last)
|
||||||
|
|
||||||
|
print(f" [{first_str}, ..., {last_str}]")
|
||||||
|
|
||||||
|
print(" ],")
|
||||||
|
print(" ]")
|
||||||
|
print(f" sum = {t.sum().item():.6f}\n")
|
||||||
|
|
||||||
|
|
||||||
|
def debug_hook(name):
|
||||||
|
def fn(_m, input, output):
|
||||||
|
if isinstance(input, torch.Tensor):
|
||||||
|
summarize(input, name + "_in")
|
||||||
|
elif isinstance(input, (tuple, list)) and isinstance(input[0], torch.Tensor):
|
||||||
|
summarize(input[0], name + "_in")
|
||||||
|
if isinstance(output, torch.Tensor):
|
||||||
|
summarize(output, name + "_out")
|
||||||
|
elif isinstance(output, (tuple, list)) and isinstance(output[0], torch.Tensor):
|
||||||
|
summarize(output[0], name + "_out")
|
||||||
|
|
||||||
|
return fn
|
||||||
|
|
||||||
|
|
||||||
|
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Process model with specified path")
|
||||||
|
parser.add_argument("--model-path", "-m", help="Path to the model")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
model_path = os.environ.get('MODEL_PATH', args.model_path)
|
model_path = os.environ.get("MODEL_PATH", args.model_path)
|
||||||
if model_path is None:
|
if model_path is None:
|
||||||
parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
|
parser.error(
|
||||||
|
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
|
||||||
|
)
|
||||||
|
|
||||||
config = AutoConfig.from_pretrained(model_path)
|
config = AutoConfig.from_pretrained(model_path)
|
||||||
|
|
||||||
@@ -34,18 +153,30 @@ config = AutoConfig.from_pretrained(model_path)
|
|||||||
|
|
||||||
if unreleased_model_name:
|
if unreleased_model_name:
|
||||||
model_name_lower = unreleased_model_name.lower()
|
model_name_lower = unreleased_model_name.lower()
|
||||||
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
unreleased_module_path = (
|
||||||
|
f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||||||
|
)
|
||||||
class_name = f"{unreleased_model_name}ForCausalLM"
|
class_name = f"{unreleased_model_name}ForCausalLM"
|
||||||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
model_class = getattr(
|
||||||
model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
|
importlib.import_module(unreleased_module_path), class_name
|
||||||
|
)
|
||||||
|
model = model_class.from_pretrained(
|
||||||
|
model_path
|
||||||
|
) # Note: from_pretrained, not fromPretrained
|
||||||
except (ImportError, AttributeError) as e:
|
except (ImportError, AttributeError) as e:
|
||||||
print(f"Failed to import or load model: {e}")
|
print(f"Failed to import or load model: {e}")
|
||||||
exit(1)
|
exit(1)
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path)
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_path, device_map="auto", offload_folder="offload"
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, module in model.named_modules():
|
||||||
|
if len(list(module.children())) == 0: # only leaf modules
|
||||||
|
module.register_forward_hook(debug_hook(name))
|
||||||
|
|
||||||
model_name = os.path.basename(model_path)
|
model_name = os.path.basename(model_path)
|
||||||
# Printing the Model class to allow for easier debugging. This can be useful
|
# Printing the Model class to allow for easier debugging. This can be useful
|
||||||
|
|||||||
Reference in New Issue
Block a user