mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	ggml-cpu: Integrate fp32=bf16xbf16 SME KleidiAI kernel (#13053)
* ggml-cpu: Integrate fp32=bf16xbf16 SME KleidiAI kernel Signed-off-by: Dan Johansson <dan.johansson@arm.com> * * code review fixes Signed-off-by: Dan Johansson <dan.johansson@arm.com> * * adds a comment that clarifies barrier usage Signed-off-by: Dan Johansson <dan.johansson@arm.com> --------- Signed-off-by: Dan Johansson <dan.johansson@arm.com> Co-authored-by: Charles Xu <charles.xu@arm.com>
This commit is contained in:
		| @@ -428,6 +428,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name) | ||||
|             ${KLEIDIAI_SRC}/kai/ukernels/ | ||||
|             ${KLEIDIAI_SRC}/kai/ukernels/matmul/ | ||||
|             ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/ | ||||
|             ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/ | ||||
|             ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/) | ||||
|  | ||||
|         set(ARCH_FLAGS_TEMP "${ARCH_FLAGS}") | ||||
| @@ -438,17 +439,19 @@ function(ggml_add_cpu_backend_variant_impl tag_name) | ||||
|         string(FIND "${ARCH_FLAGS_TEMP}" "+i8mm" I8MM_ENABLED) | ||||
|         string(FIND "${ARCH_FLAGS_TEMP}" "+sme" SME_ENABLED) | ||||
|  | ||||
|         set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS}) | ||||
|         set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS_TEMP}) | ||||
|  | ||||
|         list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c) | ||||
|         list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c) | ||||
|         list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c) | ||||
|         list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c) | ||||
|         list(APPEND GGML_KLEIDIAI_SOURCES | ||||
|             ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c | ||||
|             ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c | ||||
|             ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c | ||||
|             ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c) | ||||
|  | ||||
|         if (NOT DOTPROD_ENABLED MATCHES -1) | ||||
|             list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.c) | ||||
|             list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.c) | ||||
|             list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c) | ||||
|             list(APPEND GGML_KLEIDIAI_SOURCES | ||||
|                 ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.c | ||||
|                 ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.c | ||||
|                 ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c) | ||||
|         endif() | ||||
|  | ||||
|         if (NOT I8MM_ENABLED MATCHES -1) | ||||
| @@ -456,9 +459,13 @@ function(ggml_add_cpu_backend_variant_impl tag_name) | ||||
|         endif() | ||||
|  | ||||
|         if (NOT SME_ENABLED MATCHES -1) | ||||
|             list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c) | ||||
|             list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c) | ||||
|             set(PRIVATE_ARCH_FLAGS "${PRIVATE_ARCH_FLAGS}+sve+sve2") | ||||
|             list(APPEND GGML_KLEIDIAI_SOURCES | ||||
|                 ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c | ||||
|                 ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c | ||||
|                 ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c | ||||
|                 ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c | ||||
|                 ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c) | ||||
|             set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2") | ||||
|         endif() | ||||
|  | ||||
|         set_source_files_properties(${GGML_KLEIDIAI_SOURCES} PROPERTIES COMPILE_OPTIONS "${PRIVATE_ARCH_FLAGS}") | ||||
|   | ||||
| @@ -4,16 +4,22 @@ | ||||
|  | ||||
| // KleidiAI micro-kernels | ||||
| #include "kai_matmul_clamp_f32_qsi8d32p_qsi4c32p_interface.h" | ||||
| #include "kai_lhs_quant_pack_qsi8d32p_f32.h" | ||||
| #include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h" | ||||
| #include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h" | ||||
| #include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h" | ||||
| #include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.h" | ||||
| #include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.h" | ||||
| #include "kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.h" | ||||
| #include "kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.h" | ||||
| #include "kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.h" | ||||
| #include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.h" | ||||
| #include "kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.h" | ||||
|  | ||||
| #include "kai_lhs_pack_bf16p2vlx2_f32_sme.h" | ||||
| #include "kai_lhs_quant_pack_qsi8d32p_f32.h" | ||||
| #include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h" | ||||
|  | ||||
| #include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h" | ||||
| #include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h" | ||||
| #include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h" | ||||
|  | ||||
| #include "kai_common.h" | ||||
|  | ||||
| #include "kernels.h" | ||||
| @@ -61,6 +67,53 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { | ||||
|             /* .pack_func   = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon, | ||||
|         }, | ||||
|         /* .required_cpu       = */ CPU_FEATURE_SME, | ||||
|         /* .lhs_type           = */ GGML_TYPE_F32, | ||||
|         /* .rhs_type           = */ GGML_TYPE_Q4_0, | ||||
|         /* .op_type            = */ GGML_TYPE_F32, | ||||
|     }, | ||||
|     { | ||||
|         /* SME GEMM */ | ||||
|         /* .kern_info = */ { | ||||
|             /* .get_m_step            = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_n_step            = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_mr                = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_nr                = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_kr                = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_sr                = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_lhs_offset        = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_dst_offset        = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_dst_size          = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .run_kernel            = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|         }, | ||||
|         /* SME GEMV */ | ||||
|         /* .kern_info = */ { | ||||
|             /* .get_m_step            = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_n_step            = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_mr                = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_nr                = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_kr                = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_sr                = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_lhs_offset        = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_dst_offset        = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .get_dst_size          = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|             /* .run_kernel            = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, | ||||
|         }, | ||||
|         /* .lhs_info = */ { | ||||
|             /* .get_offset            = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme, | ||||
|             /* .get_packed_offset     = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme, | ||||
|             /* .packed_size           = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme, | ||||
|             /* .pack_func             = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme, | ||||
|         }, | ||||
|         /* .rhs_info = */ { | ||||
|             /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme, | ||||
|             /* .pack_func   = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme, | ||||
|         }, | ||||
|         /* .required_cpu       = */ CPU_FEATURE_SME, | ||||
|         /* .lhs_type           = */ GGML_TYPE_F32, | ||||
|         /* .rhs_type           = */ GGML_TYPE_F16, | ||||
|         /* .op_type            = */ GGML_TYPE_F32, | ||||
|     }, | ||||
| #endif | ||||
| #if defined(__APPLE__) | ||||
| @@ -105,6 +158,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { | ||||
|             /* .pack_func   = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, | ||||
|         }, | ||||
|         /* .required_cpu       = */ CPU_FEATURE_DOTPROD, | ||||
|         /* .lhs_type           = */ GGML_TYPE_F32, | ||||
|         /* .rhs_type           = */ GGML_TYPE_Q4_0, | ||||
|         /* .op_type            = */ GGML_TYPE_F32, | ||||
|     }, | ||||
| #endif | ||||
| #if defined(__ARM_FEATURE_MATMUL_INT8) | ||||
| @@ -148,6 +204,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { | ||||
|             /* .pack_func   = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, | ||||
|         }, | ||||
|         /* .required_cpu       = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM, | ||||
|         /* .lhs_type           = */ GGML_TYPE_F32, | ||||
|         /* .rhs_type           = */ GGML_TYPE_Q4_0, | ||||
|         /* .op_type            = */ GGML_TYPE_F32, | ||||
|     }, | ||||
| #endif | ||||
| #else | ||||
| @@ -192,6 +251,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { | ||||
|             /* .pack_func   = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, | ||||
|         }, | ||||
|         /* .required_cpu       = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM, | ||||
|         /* .lhs_type           = */ GGML_TYPE_F32, | ||||
|         /* .rhs_type           = */ GGML_TYPE_Q4_0, | ||||
|         /* .op_type            = */ GGML_TYPE_F32, | ||||
|     }, | ||||
| #endif | ||||
| #if defined(__ARM_FEATURE_DOTPROD) | ||||
| @@ -235,12 +297,33 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { | ||||
|             /* .pack_func   = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, | ||||
|         }, | ||||
|         /* .required_cpu       = */ CPU_FEATURE_DOTPROD, | ||||
|         /* .lhs_type           = */ GGML_TYPE_F32, | ||||
|         /* .rhs_type           = */ GGML_TYPE_Q4_0, | ||||
|         /* .op_type            = */ GGML_TYPE_F32, | ||||
|     }, | ||||
| #endif | ||||
| #endif | ||||
| }; | ||||
|  | ||||
| ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature features) { | ||||
| ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor) { | ||||
|     ggml_kleidiai_kernels * kernel = nullptr; | ||||
|  | ||||
|     if (tensor->op == GGML_OP_MUL_MAT && tensor->src[0] != nullptr && tensor->src[1] != nullptr) { | ||||
|         for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) { | ||||
|             if ((cpu_features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu && | ||||
|                 gemm_gemv_kernels[i].lhs_type == tensor->src[1]->type && | ||||
|                 gemm_gemv_kernels[i].rhs_type == tensor->src[0]->type && | ||||
|                 gemm_gemv_kernels[i].op_type  == tensor->type) { | ||||
|                 kernel = &gemm_gemv_kernels[i]; | ||||
|                 break; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     return kernel; | ||||
| } | ||||
|  | ||||
| ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features) { | ||||
|     ggml_kleidiai_kernels * kernels = nullptr; | ||||
|  | ||||
|     for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) { | ||||
|   | ||||
| @@ -4,6 +4,9 @@ | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| #include <functional> | ||||
| #include "ggml.h" | ||||
|  | ||||
| enum cpu_feature { | ||||
|     CPU_FEATURE_NONE    = 0, | ||||
|     CPU_FEATURE_DOTPROD = 1, | ||||
| @@ -26,26 +29,53 @@ struct kernel_info { | ||||
|     size_t (*get_nr)(void); | ||||
|     size_t (*get_kr)(void); | ||||
|     size_t (*get_sr)(void); | ||||
|     size_t (*get_lhs_offset)(size_t m_idx, size_t k, size_t bl); | ||||
|     size_t (*get_rhs_packed_offset)(size_t n_idx, size_t k, size_t bl); | ||||
|     std::variant< | ||||
|         std::function<size_t(size_t n_idx, size_t k, size_t bl)>, | ||||
|         std::function<size_t(size_t m_idx, size_t k)> | ||||
|     > get_lhs_offset; | ||||
|     std::variant< | ||||
|         std::function<size_t(size_t n_idx, size_t k, size_t bl)>, | ||||
|         std::function<size_t(size_t n_idx, size_t k)> | ||||
|     > get_rhs_packed_offset; | ||||
|     size_t (*get_dst_offset)(size_t m_idx, size_t n_idx, size_t stride); | ||||
|     size_t (*get_dst_size)(size_t m, size_t n); | ||||
|     void (*run_kernel)(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed, | ||||
|                          float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max); | ||||
|     std::variant< | ||||
|         std::function<void(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed, | ||||
|             float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max)>, | ||||
|         std::function<void(size_t m, size_t n, size_t k, const void* lhs_packed, const void* rhs_packed, void* dst, size_t dst_stride_row, | ||||
|             size_t dst_stride_col, float clamp_min, float clamp_max)> | ||||
|     > run_kernel; | ||||
| }; | ||||
|  | ||||
| struct lhs_packing_info { | ||||
|     size_t (*get_offset)(size_t m_idx, size_t lhs_stride); | ||||
|     size_t (*get_packed_offset)(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr); | ||||
|     size_t (*packed_size)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr); | ||||
|     void (*pack_func)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs, | ||||
|                       size_t lhs_stride, void* lhs_packed); | ||||
|     std::variant< | ||||
|         std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>, | ||||
|         std::function<size_t(size_t m_idx, size_t k, size_t mr, size_t kr, size_t sr)> | ||||
|     > get_packed_offset; | ||||
|     std::variant< | ||||
|         std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>, | ||||
|         std::function<size_t(size_t m, size_t k, size_t mr, size_t kr, size_t sr)> | ||||
|     > packed_size; | ||||
|     std::variant< | ||||
|         std::function<void(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs, | ||||
|             size_t lhs_stride, void* lhs_packed)>, | ||||
|         std::function<void(size_t m, size_t k, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const void* lhs, size_t lhs_stride, | ||||
|         void* lhs_packed)> | ||||
|     > pack_func; | ||||
| }; | ||||
|  | ||||
| struct rhs_packing_info { | ||||
|     size_t (*packed_size)(size_t n, size_t k, size_t nr, size_t kr, size_t bl); | ||||
|     void (*pack_func)(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs, | ||||
|                       const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params); | ||||
|     std::variant< | ||||
|         std::function<size_t(size_t n, size_t k, size_t nr, size_t kr, size_t bl)>, | ||||
|         std::function<size_t(size_t n, size_t k)> | ||||
|     > packed_size; | ||||
|     std::variant< | ||||
|         std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs, | ||||
|             const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params)>, | ||||
|         std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t rhs_stride, const void* rhs, | ||||
|             const void* bias, const void* scale, void* rhs_packed, size_t extra_bytes, const void* params)> | ||||
|     > pack_func; | ||||
| }; | ||||
|  | ||||
| struct ggml_kleidiai_kernels { | ||||
| @@ -55,6 +85,10 @@ struct ggml_kleidiai_kernels { | ||||
|     rhs_packing_info rhs_info; | ||||
|  | ||||
|     cpu_feature required_cpu; | ||||
|     ggml_type lhs_type; | ||||
|     ggml_type rhs_type; | ||||
|     ggml_type op_type; | ||||
| }; | ||||
|  | ||||
| ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features); | ||||
| ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor); | ||||
| ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features); | ||||
|   | ||||
| @@ -34,8 +34,9 @@ | ||||
| #include "ggml-common.h" | ||||
|  | ||||
| struct ggml_kleidiai_context { | ||||
|     cpu_feature features; | ||||
|     ggml_kleidiai_kernels * kernels; | ||||
| } static ctx = { NULL }; | ||||
| } static ctx = { CPU_FEATURE_NONE, NULL }; | ||||
|  | ||||
| static void init_kleidiai_context(void) { | ||||
|  | ||||
| @@ -47,7 +48,7 @@ static void init_kleidiai_context(void) { | ||||
|         const char *env_var = getenv("GGML_KLEIDIAI_SME"); | ||||
|         int sme_enabled = 0; | ||||
|  | ||||
|         cpu_feature features  = (ggml_cpu_has_dotprod()     ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) | | ||||
|         ctx.features  = (ggml_cpu_has_dotprod()     ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) | | ||||
|                         (ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM    : CPU_FEATURE_NONE) | | ||||
|                         (ggml_cpu_has_sve()         ? CPU_FEATURE_SVE     : CPU_FEATURE_NONE); | ||||
|  | ||||
| @@ -56,9 +57,9 @@ static void init_kleidiai_context(void) { | ||||
|         } | ||||
|  | ||||
|         if (sme_enabled != 0) { | ||||
|             features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE; | ||||
|             ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE; | ||||
|         } | ||||
|         ctx.kernels = ggml_kleidiai_select_kernels(features); | ||||
|         ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features); | ||||
|     } | ||||
|     ggml_critical_section_end(); | ||||
| } | ||||
| @@ -68,34 +69,215 @@ static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) { | ||||
|     return tensor->ne[dim]; | ||||
| } | ||||
|  | ||||
| template<typename Ret, typename Variant, typename... Args> | ||||
| static Ret variant_call(const Variant & var, Args&&... args) { | ||||
|     return std::visit([&](auto&& func) -> Ret { | ||||
|         if constexpr (std::is_invocable_r_v<Ret, decltype(func), Args...>) { | ||||
|             return func(std::forward<Args>(args)...); | ||||
|         } else { | ||||
|             throw std::runtime_error("Invalid function type in variant_call"); | ||||
|         } | ||||
|     }, var); | ||||
| } | ||||
|  | ||||
| namespace ggml::cpu::kleidiai { | ||||
|  | ||||
| static size_t round_down(size_t x, size_t y) { | ||||
|     return y == 0 ? x : x - (x % y); | ||||
| } | ||||
|  | ||||
| static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint16_t * src, size_t rhs_stride) { | ||||
|     size_t src_stride = rhs_stride / sizeof(uint16_t); | ||||
|     size_t dst_stride = n; | ||||
|  | ||||
|     for (size_t k_idx = 0; k_idx < k; ++k_idx) { | ||||
|         for (size_t n_idx = 0; n_idx < n; ++n_idx) { | ||||
|             uint16_t v = *(src + k_idx + n_idx * src_stride); | ||||
|             *(dst + n_idx + k_idx * dst_stride) = kai_cast_f32_f16(v); | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| class tensor_traits : public ggml::cpu::tensor_traits { | ||||
|     bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override { | ||||
|         GGML_ASSERT(ctx.kernels); | ||||
|         kernel_info * kernel = op->src[1]->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm; | ||||
|         ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op); | ||||
|         GGML_ASSERT(kernels); | ||||
|         kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; | ||||
|  | ||||
|         size_t k = op->src[0]->ne[0]; | ||||
|         size_t n = op->src[0]->ne[1]; | ||||
|         size_t m = op->src[1]->ne[1]; | ||||
|  | ||||
|         size_t mr = kernel->get_mr(); | ||||
|         size_t kr = kernel->get_kr(); | ||||
|         size_t sr = kernel->get_sr(); | ||||
|  | ||||
|         size = ctx.kernels->lhs_info.packed_size(m, k, QK4_0, mr, kr, sr); | ||||
|         if (kernels->rhs_type == GGML_TYPE_Q4_0) { | ||||
|             size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr); | ||||
|         } else if (kernels->rhs_type == GGML_TYPE_F16) { | ||||
|             size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr) + | ||||
|                    variant_call<size_t>(kernels->rhs_info.packed_size, n, k) + | ||||
|                    k * n * sizeof(float) + n * sizeof(float); | ||||
|         } else { | ||||
|             GGML_ASSERT(false); | ||||
|         } | ||||
|  | ||||
|         return true; | ||||
|     } | ||||
|  | ||||
|  | ||||
|     bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override { | ||||
|         if (dst->op == GGML_OP_MUL_MAT) { | ||||
|             if (dst->src[0]->type == GGML_TYPE_Q4_0) { | ||||
|                 return compute_forward_q4_0(params, dst); | ||||
|             } else if (dst->src[0]->type == GGML_TYPE_F16) { | ||||
|                 return compute_forward_kv_cache(params, dst); | ||||
|             } | ||||
|         } | ||||
|         return false; | ||||
|     } | ||||
|  | ||||
|     bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) { | ||||
|         static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT; | ||||
|  | ||||
|         const ggml_tensor * src0 = dst->src[0]; | ||||
|         const ggml_tensor * src1 = dst->src[1]; | ||||
|  | ||||
|         GGML_TENSOR_BINARY_OP_LOCALS | ||||
|  | ||||
|             GGML_ASSERT(ctx.kernels); | ||||
|             kernel_info * kernel = src1->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm; | ||||
|             lhs_packing_info * lhs_info = &ctx.kernels->lhs_info; | ||||
|         ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst); | ||||
|         GGML_ASSERT(kernels); | ||||
|  | ||||
|         kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; | ||||
|         GGML_ASSERT(kernel); | ||||
|  | ||||
|         const int nth = params->nth; | ||||
|         const int ith = params->ith; | ||||
|  | ||||
|         const int64_t lhs_batch_size0 = ne12; | ||||
|         const int64_t rhs_batch_size0 = ne02; | ||||
|         const int64_t batch_size      = rhs_batch_size0; | ||||
|  | ||||
|         const int64_t r = lhs_batch_size0 / rhs_batch_size0; | ||||
|  | ||||
|         const int64_t m = ne11 * r; | ||||
|         const int64_t n = ne01; | ||||
|         const int64_t k = ne00; | ||||
|  | ||||
|         const size_t lhs_stride = src1->nb[1]; | ||||
|         const size_t rhs_stride = src0->nb[1]; | ||||
|         const size_t dst_stride = dst->nb[1]; | ||||
|  | ||||
|         const int64_t mr = static_cast<int64_t>(kernel->get_mr()); | ||||
|         const int64_t nr = static_cast<int64_t>(kernel->get_nr()); | ||||
|         const int64_t kr = static_cast<int64_t>(kernel->get_kr()); | ||||
|         const int64_t sr = static_cast<int64_t>(kernel->get_sr()); | ||||
|  | ||||
|         const size_t lhs_packed_size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr); | ||||
|         const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k); | ||||
|         const size_t kxn_size        = k * n * sizeof(float); | ||||
|         const size_t bias_size       = n * sizeof(float); | ||||
|  | ||||
|         const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size; | ||||
|         GGML_ASSERT(wsize_required <= params->wsize); | ||||
|  | ||||
|         uint8_t * lhs_packed = static_cast<uint8_t *>(params->wdata); | ||||
|         uint8_t * rhs_packed = lhs_packed + lhs_packed_size; | ||||
|         uint8_t * rhs_kxn    = rhs_packed + rhs_packed_size; | ||||
|         uint8_t * bias       = rhs_kxn + kxn_size; | ||||
|  | ||||
|         for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) { | ||||
|             const uint8_t * lhs_batch = static_cast<const uint8_t *>(src1->data) + batch_idx * m * lhs_stride; | ||||
|             const uint8_t * rhs_batch = static_cast<const uint8_t *>(src0->data) + batch_idx * n * rhs_stride; | ||||
|             uint8_t * dst_batch       = static_cast<uint8_t *>(dst->data) + batch_idx * m * dst_stride; | ||||
|  | ||||
|             // LHS packing | ||||
|             { | ||||
|                 const int64_t m_roundup_mr = kai_roundup(m, mr); | ||||
|                 const int64_t num_threads  = KAI_MIN(m_roundup_mr / mr, nth); | ||||
|  | ||||
|                 if (ith < num_threads) { | ||||
|                     const int64_t num_m_per_thread0   = round_down(m_roundup_mr / num_threads, mr); | ||||
|                     const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0; | ||||
|  | ||||
|                     const int64_t m_start          = ith * num_m_per_thread0; | ||||
|                     const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0; | ||||
|  | ||||
|                     const size_t lhs_offset        = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride); | ||||
|                     const size_t lhs_packed_offset = variant_call<size_t>(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr); | ||||
|  | ||||
|                     const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset; | ||||
|                     void * dst_ptr       = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset; | ||||
|  | ||||
|                     variant_call<void>(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr); | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             // RHS packing | ||||
|             if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) { | ||||
|                 // First thread to reach this point handles RHS packing | ||||
|                 memset(bias, 0, n * sizeof(float)); | ||||
|                 transpose_f32kxn_f16nxk(n, k, reinterpret_cast<float *>(rhs_kxn), | ||||
|                                         reinterpret_cast<const uint16_t *>(rhs_batch), rhs_stride); | ||||
|  | ||||
|                 variant_call<void>(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float), | ||||
|                              rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr); | ||||
|             } | ||||
|  | ||||
|             ggml_barrier(params->threadpool); | ||||
|  | ||||
|             first_to_arrive.clear(std::memory_order_release); | ||||
|  | ||||
|             // Perform the matmul | ||||
|             { | ||||
|                 const int64_t m_to_process = m; | ||||
|                 const int64_t m_start      = 0; | ||||
|  | ||||
|                 const int64_t n_step      = static_cast<int64_t>(kernel->get_n_step()); | ||||
|                 const int64_t num_threads = KAI_MIN(n / n_step, nth); | ||||
|  | ||||
|                 if (ith < num_threads) { | ||||
|                     const int64_t num_n_per_thread0   = round_down(n / num_threads, n_step); | ||||
|                     const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0; | ||||
|  | ||||
|                     const int64_t n_start      = ith * num_n_per_thread0; | ||||
|                     const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0; | ||||
|  | ||||
|                     const size_t lhs_packed_offset = variant_call<size_t>(kernel->get_lhs_offset, m_start, k); | ||||
|                     const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k); | ||||
|                     const size_t dst_offset        = kernel->get_dst_offset(m_start, n_start, dst_stride); | ||||
|  | ||||
|                     const void * lhs_ptr = lhs_packed + lhs_packed_offset; | ||||
|                     const void * rhs_ptr = rhs_packed + rhs_packed_offset; | ||||
|                     float * dst_ptr      = reinterpret_cast<float *>(dst_batch + dst_offset); | ||||
|  | ||||
|                     variant_call<void>(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX); | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (batch_idx != batch_size - 1) { | ||||
|                 // This barrier is necessary when the batch size is larger than 1. While processing a batch, | ||||
|                 // the work data buffer (params->wdata) is used as temporary storage which means that only | ||||
|                 // a single batch can be processed at any given time. No barrier is needed for the last | ||||
|                 // batch since GGML inserts a barrier between the execution of every operator. | ||||
|                 ggml_barrier(params->threadpool); | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         return true; | ||||
|     } | ||||
|  | ||||
|     bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) { | ||||
|         const ggml_tensor * src0 = dst->src[0]; | ||||
|         const ggml_tensor * src1 = dst->src[1]; | ||||
|  | ||||
|         GGML_TENSOR_BINARY_OP_LOCALS | ||||
|  | ||||
|         ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst); | ||||
|         GGML_ASSERT(kernels); | ||||
|  | ||||
|         kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; | ||||
|         lhs_packing_info * lhs_info = &kernels->lhs_info; | ||||
|  | ||||
|         GGML_ASSERT(kernel); | ||||
|  | ||||
| @@ -106,6 +288,14 @@ class tensor_traits : public ggml::cpu::tensor_traits { | ||||
|         const size_t m = ne11; | ||||
|         const size_t n = ne01; | ||||
|  | ||||
|         size_t mr = kernel->get_mr(); | ||||
|         size_t kr = kernel->get_kr(); | ||||
|         size_t sr = kernel->get_sr(); | ||||
|  | ||||
|         const uint8_t * lhs        = static_cast<const uint8_t *>(src1->data); | ||||
|         uint8_t * lhs_packed       = (uint8_t*)params->wdata; | ||||
|         const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data); | ||||
|  | ||||
|         const size_t n_step = kernel->get_n_step(); | ||||
|         const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step); | ||||
|         const size_t n_start = ith * num_n_per_thread; | ||||
| @@ -115,14 +305,6 @@ class tensor_traits : public ggml::cpu::tensor_traits { | ||||
|             n_to_process = n - n_start; | ||||
|         } | ||||
|  | ||||
|             const uint8_t * lhs        = static_cast<const uint8_t *>(src1->data); | ||||
|             uint8_t * lhs_packed       = (uint8_t*)params->wdata; | ||||
|             const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data); | ||||
|  | ||||
|             size_t mr = kernel->get_mr(); | ||||
|             size_t kr = kernel->get_kr(); | ||||
|             size_t sr = kernel->get_sr(); | ||||
|  | ||||
|         // Calculate number of columns to be processed per thread | ||||
|         const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth; | ||||
|         const size_t m_start = ith * num_m_per_thread; | ||||
| @@ -131,33 +313,32 @@ class tensor_traits : public ggml::cpu::tensor_traits { | ||||
|             m_to_process = m - m_start; | ||||
|         } | ||||
|  | ||||
|             if(m_start < m) { | ||||
|         if (m_start < m) { | ||||
|             // Transform LHS | ||||
|             const size_t src_stride        = src1->nb[1]; | ||||
|             const float * src_ptr          = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1])); | ||||
|                 const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr); | ||||
|             const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, QK4_0, mr, kr, sr); | ||||
|             void * lhs_packed_ptr          = static_cast<void *>(lhs_packed + lhs_packed_offset); | ||||
|  | ||||
|                 lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr); | ||||
|             variant_call<void>(lhs_info->pack_func, m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr); | ||||
|         } | ||||
|  | ||||
|         ggml_barrier(params->threadpool); | ||||
|  | ||||
|         // Perform the operation | ||||
|         const size_t dst_stride        = dst->nb[1]; | ||||
|             const size_t lhs_packed_offset = lhs_info->get_packed_offset(0, k, QK4_0, mr, kr, sr); | ||||
|             const size_t rhs_packed_offset = kernel->get_rhs_packed_offset(n_start, k, QK4_0); | ||||
|         const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, 0, k, QK4_0, mr, kr, sr); | ||||
|         const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k, QK4_0); | ||||
|         const size_t dst_offset        = kernel->get_dst_offset(0, n_start, dst_stride); | ||||
|         const void * rhs_ptr           = static_cast<const void *>(rhs_packed + rhs_packed_offset); | ||||
|         const void* lhs_ptr            = (const void*)((const char *)lhs_packed + lhs_packed_offset); | ||||
|         float *dst_ptr                 = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset); | ||||
|  | ||||
|             kernel->run_kernel(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, | ||||
|                                dst_stride, sizeof(float), -FLT_MAX, FLT_MAX); | ||||
|         variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, | ||||
|                            sizeof(float), -FLT_MAX, FLT_MAX); | ||||
|  | ||||
|         return true; | ||||
|     } | ||||
|         return false; | ||||
|     } | ||||
|  | ||||
| public: | ||||
|     int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) { | ||||
| @@ -169,13 +350,13 @@ public: | ||||
|         size_t sr      = ctx.kernels->gemm.get_sr(); | ||||
|  | ||||
| #ifndef NDEBUG | ||||
|         const size_t repacked_size = ctx.kernels->rhs_info.packed_size(n, k, nr, kr, QK4_0); | ||||
|         const size_t repacked_size = variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0); | ||||
|         GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!"); | ||||
| #endif | ||||
|         struct kai_rhs_pack_qs4cxs1s0_param params; | ||||
|         params.lhs_zero_point = 1; | ||||
|         params.rhs_zero_point = 8; | ||||
|         ctx.kernels->rhs_info.pack_func(1, n, k, nr, kr, sr, QK4_0, (const uint8_t *)data, NULL, tensor->data, 0, ¶ms); | ||||
|         variant_call<void>(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, ¶ms); | ||||
|  | ||||
|         return 0; | ||||
|  | ||||
| @@ -189,7 +370,7 @@ static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struc | ||||
| } | ||||
| }  // namespace ggml::cpu::kleidiai | ||||
|  | ||||
| GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | ||||
| static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | ||||
|     tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor); | ||||
|  | ||||
|     GGML_UNUSED(buffer); | ||||
| @@ -238,12 +419,11 @@ static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_b | ||||
| namespace ggml::cpu::kleidiai { | ||||
| class extra_buffer_type : ggml::cpu::extra_buffer_type { | ||||
|     bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override { | ||||
|         if (    op->op == GGML_OP_MUL_MAT && | ||||
|         if (op->op == GGML_OP_MUL_MAT && | ||||
|             op->src[0]->type == GGML_TYPE_Q4_0 && | ||||
|             op->src[0]->buffer && | ||||
|             (ggml_n_dims(op->src[0]) == 2) && | ||||
|                 op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels | ||||
|                 ) { | ||||
|             op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) { | ||||
|             if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) { | ||||
|                 return false; | ||||
|             } | ||||
| @@ -260,6 +440,19 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type { | ||||
|             if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) { | ||||
|                 return (ggml::cpu::tensor_traits *) op->src[0]->extra; | ||||
|             } | ||||
|             else if (ggml_kleidiai_select_kernels(ctx.features, op) && | ||||
|                      op->src[0]->op == GGML_OP_VIEW && | ||||
|                      (op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op ==  GGML_OP_SOFT_MAX) && | ||||
|                      op->src[1]->ne[1] > 1) { | ||||
|                 if ((op->src[0]->nb[0] != 2) || | ||||
|                     (op->src[1]->nb[0] != 4) || | ||||
|                     (op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) || | ||||
|                     (op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) { | ||||
|                     return nullptr; | ||||
|                 } | ||||
|  | ||||
|                 return ggml::cpu::kleidiai::get_tensor_traits(NULL, NULL); | ||||
|             } | ||||
|         } | ||||
|         return nullptr; | ||||
|     } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Dan Johansson
					Dan Johansson