mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-30 08:42:00 +00:00
opencl: add new ops - argsort, div, sub, addrows, sigmoid, group_norm (#13787)
* opencl: add `argsort` * opencl: add `div` * opencl: add `add_rows` * opencl: add `sub` * opencl: add `sigmoid`, both `f16` and `f32` * opencl: add `group_norm`
This commit is contained in:
@@ -299,27 +299,37 @@ struct ggml_backend_opencl_context {
|
||||
cl_program program_mul_mv_f16_f32;
|
||||
cl_program program_mul_mv_f32_f32;
|
||||
cl_program program_mul;
|
||||
cl_program program_div;
|
||||
cl_program program_sub;
|
||||
cl_program program_norm;
|
||||
cl_program program_relu;
|
||||
cl_program program_rms_norm;
|
||||
cl_program program_group_norm;
|
||||
cl_program program_rope;
|
||||
cl_program program_scale;
|
||||
cl_program program_silu;
|
||||
cl_program program_sigmoid;
|
||||
cl_program program_softmax_f32;
|
||||
cl_program program_softmax_f16;
|
||||
cl_program program_softmax_4_f32;
|
||||
cl_program program_softmax_4_f16;
|
||||
cl_program program_argsort_f32_i32;
|
||||
cl_program program_sum_rows_f32;
|
||||
|
||||
cl_kernel kernel_add, kernel_add_row;
|
||||
cl_kernel kernel_mul, kernel_mul_row;
|
||||
cl_kernel kernel_div, kernel_div_row;
|
||||
cl_kernel kernel_sub, kernel_sub_row;
|
||||
cl_kernel kernel_scale;
|
||||
cl_kernel kernel_silu, kernel_silu_4;
|
||||
cl_kernel kernel_gelu, kernel_gelu_4;
|
||||
cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
|
||||
cl_kernel kernel_relu;
|
||||
cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
|
||||
cl_kernel kernel_clamp;
|
||||
cl_kernel kernel_norm;
|
||||
cl_kernel kernel_rms_norm;
|
||||
cl_kernel kernel_group_norm;
|
||||
cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
|
||||
cl_kernel kernel_soft_max, kernel_soft_max_4;
|
||||
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
|
||||
@@ -339,6 +349,8 @@ struct ggml_backend_opencl_context {
|
||||
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
|
||||
cl_kernel kernel_mul_mv_q6_K_f32;
|
||||
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
|
||||
cl_kernel kernel_argsort_f32_i32;
|
||||
cl_kernel kernel_sum_rows_f32;
|
||||
|
||||
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
||||
// Transpose kernels
|
||||
@@ -986,6 +998,105 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// argsort
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "argsort.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("argsort.cl");
|
||||
#endif
|
||||
backend_ctx->program_argsort_f32_i32 =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// div
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "div.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("div.cl");
|
||||
#endif
|
||||
backend_ctx->program_div =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// sub
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "sub.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("sub.cl");
|
||||
#endif
|
||||
backend_ctx->program_sub =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// sum_rows
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "sum_rows.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("sum_rows.cl");
|
||||
#endif
|
||||
backend_ctx->program_sum_rows_f32 =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// sigmoid
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "sigmoid.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("sigmoid.cl");
|
||||
#endif
|
||||
backend_ctx->program_sigmoid =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// group_norm
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "group_norm.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("group_norm.cl");
|
||||
#endif
|
||||
backend_ctx->program_group_norm =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// Adreno kernels
|
||||
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
||||
// transpose
|
||||
@@ -1856,6 +1967,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_SUB:
|
||||
return op->src[0]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
@@ -1863,7 +1976,9 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
|
||||
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -1873,6 +1988,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_RMS_NORM:
|
||||
return true;
|
||||
case GGML_OP_GROUP_NORM:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_MUL_MAT:
|
||||
if (op->src[0]->type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
@@ -1912,6 +2029,10 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
||||
}
|
||||
case GGML_OP_IM2COL:
|
||||
return true;
|
||||
case GGML_OP_ARGSORT:
|
||||
return op->src[0]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_SUM_ROWS:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -3238,6 +3359,256 @@ static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
GGML_ASSERT(src1);
|
||||
GGML_ASSERT(src1->extra);
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
const int ne03 = src0->ne[3];
|
||||
|
||||
const cl_ulong nb00 = src0->nb[0];
|
||||
const cl_ulong nb01 = src0->nb[1];
|
||||
const cl_ulong nb02 = src0->nb[2];
|
||||
const cl_ulong nb03 = src0->nb[3];
|
||||
|
||||
const int ne10 = src1->ne[0];
|
||||
const int ne11 = src1->ne[1];
|
||||
const int ne12 = src1->ne[2];
|
||||
const int ne13 = src1->ne[3];
|
||||
|
||||
const cl_ulong nb10 = src1->nb[0];
|
||||
const cl_ulong nb11 = src1->nb[1];
|
||||
const cl_ulong nb12 = src1->nb[2];
|
||||
const cl_ulong nb13 = src1->nb[3];
|
||||
|
||||
const int ne0 = dst->ne[0];
|
||||
|
||||
const cl_ulong nb0 = dst->nb[0];
|
||||
const cl_ulong nb1 = dst->nb[1];
|
||||
const cl_ulong nb2 = dst->nb[2];
|
||||
const cl_ulong nb3 = dst->nb[3];
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
cl_command_queue queue = backend_ctx->queue;
|
||||
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
bool bcast_row = false;
|
||||
cl_kernel kernel;
|
||||
|
||||
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
// src1 is a row
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
bcast_row = true;
|
||||
int ne = ne00 / 4;
|
||||
kernel = backend_ctx->kernel_div_row;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_div;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
|
||||
}
|
||||
|
||||
if (bcast_row) {
|
||||
int n = ggml_nelements(dst)/4;
|
||||
size_t global_work_size[] = {(size_t)n, 1, 1};
|
||||
size_t local_work_size[] = {64, 1, 1};
|
||||
|
||||
#ifdef GGML_OPENCL_PROFILING
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||
|
||||
g_profiling_info.emplace_back();
|
||||
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||
#else
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||
#endif
|
||||
} else {
|
||||
unsigned int nth = MIN(64, ne0);
|
||||
size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
|
||||
size_t local_work_size[] = {nth, 1, 1};
|
||||
|
||||
#ifdef GGML_OPENCL_PROFILING
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||
|
||||
g_profiling_info.emplace_back();
|
||||
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||
#else
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
GGML_ASSERT(src1);
|
||||
GGML_ASSERT(src1->extra);
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
const int ne03 = src0->ne[3];
|
||||
|
||||
const cl_ulong nb00 = src0->nb[0];
|
||||
const cl_ulong nb01 = src0->nb[1];
|
||||
const cl_ulong nb02 = src0->nb[2];
|
||||
const cl_ulong nb03 = src0->nb[3];
|
||||
|
||||
const int ne10 = src1->ne[0];
|
||||
const int ne11 = src1->ne[1];
|
||||
const int ne12 = src1->ne[2];
|
||||
const int ne13 = src1->ne[3];
|
||||
|
||||
const cl_ulong nb10 = src1->nb[0];
|
||||
const cl_ulong nb11 = src1->nb[1];
|
||||
const cl_ulong nb12 = src1->nb[2];
|
||||
const cl_ulong nb13 = src1->nb[3];
|
||||
|
||||
const int ne0 = dst->ne[0];
|
||||
|
||||
const cl_ulong nb0 = dst->nb[0];
|
||||
const cl_ulong nb1 = dst->nb[1];
|
||||
const cl_ulong nb2 = dst->nb[2];
|
||||
const cl_ulong nb3 = dst->nb[3];
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
cl_command_queue queue = backend_ctx->queue;
|
||||
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
bool bcast_row = false;
|
||||
cl_kernel kernel;
|
||||
|
||||
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
// src1 is a row
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
bcast_row = true;
|
||||
int ne = ne00 / 4;
|
||||
kernel = backend_ctx->kernel_sub_row;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_sub;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
|
||||
}
|
||||
|
||||
if (bcast_row) {
|
||||
int n = ggml_nelements(dst)/4;
|
||||
size_t global_work_size[] = {(size_t)n, 1, 1};
|
||||
size_t local_work_size[] = {64, 1, 1};
|
||||
|
||||
#ifdef GGML_OPENCL_PROFILING
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||
|
||||
g_profiling_info.emplace_back();
|
||||
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||
#else
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||
#endif
|
||||
} else {
|
||||
unsigned int nth = MIN(64, ne0);
|
||||
size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
|
||||
size_t local_work_size[] = {nth, 1, 1};
|
||||
|
||||
#ifdef GGML_OPENCL_PROFILING
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||
|
||||
g_profiling_info.emplace_back();
|
||||
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||
#else
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
@@ -3429,6 +3800,58 @@ static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
|
||||
UNUSED(src1);
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
cl_command_queue queue = backend_ctx->queue;
|
||||
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
cl_kernel kernel;
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_sigmoid_f32;
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||
kernel = backend_ctx->kernel_sigmoid_f16;
|
||||
} else {
|
||||
GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
|
||||
size_t global_work_size[] = {(size_t)n, 1, 1};
|
||||
size_t local_work_size[] = {64, 1, 1};
|
||||
|
||||
size_t * local_work_size_ptr = local_work_size;
|
||||
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
|
||||
local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
|
||||
}
|
||||
|
||||
#ifdef GGML_OPENCL_PROFILING
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, &evt));
|
||||
|
||||
g_profiling_info.emplace_back();
|
||||
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size_ptr, dst);
|
||||
#else
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, NULL));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
@@ -3626,6 +4049,65 @@ static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, c
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
|
||||
UNUSED(src1);
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
cl_command_queue queue = backend_ctx->queue;
|
||||
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
int32_t n_groups = ((const int32_t *) dst->op_params)[0];
|
||||
int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
|
||||
float eps = ((const float *) dst->op_params)[1];
|
||||
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
const int ne = ne00*ne01*ne02;
|
||||
|
||||
cl_kernel kernel = backend_ctx->kernel_group_norm;
|
||||
|
||||
size_t sgs = 64;
|
||||
if (backend_ctx->gpu_family == ADRENO) {
|
||||
sgs = 64;
|
||||
} else if (backend_ctx->gpu_family == INTEL) {
|
||||
sgs = 32;
|
||||
} else {
|
||||
GGML_ASSERT(false && "Unsupported GPU");
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
|
||||
|
||||
size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
|
||||
size_t local_work_size[] = {(size_t)sgs, 1, 1};
|
||||
|
||||
#ifdef GGML_OPENCL_PROFILING
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||
|
||||
g_profiling_info.emplace_back();
|
||||
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||
#else
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
@@ -4975,6 +5457,124 @@ static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, con
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
GGML_UNUSED(src1);
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
cl_command_queue queue = backend_ctx->queue;
|
||||
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
const int ne00 = src0->ne[0];
|
||||
const int nrows = ggml_nrows(src0);
|
||||
|
||||
int ne00_padded = 1;
|
||||
while (ne00_padded < ne00) {
|
||||
ne00_padded *= 2;
|
||||
}
|
||||
|
||||
int order = (enum ggml_sort_order) dst->op_params[0];
|
||||
|
||||
cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
|
||||
|
||||
size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
|
||||
size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
|
||||
|
||||
#ifdef GGML_OPENCL_PROFILING
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||
|
||||
g_profiling_info.emplace_back();
|
||||
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||
#else
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
GGML_UNUSED(src1);
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
cl_command_queue queue = backend_ctx->queue;
|
||||
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
const int ne03 = src0->ne[3];
|
||||
|
||||
const cl_ulong nb01 = src0->nb[1];
|
||||
const cl_ulong nb02 = src0->nb[2];
|
||||
const cl_ulong nb03 = src0->nb[3];
|
||||
|
||||
const cl_ulong nb1 = dst->nb[1];
|
||||
const cl_ulong nb2 = dst->nb[2];
|
||||
const cl_ulong nb3 = dst->nb[3];
|
||||
|
||||
cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
|
||||
|
||||
size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
|
||||
size_t local_work_size[] = {(size_t)64, 1, 1};
|
||||
|
||||
#ifdef GGML_OPENCL_PROFILING
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||
|
||||
g_profiling_info.emplace_back();
|
||||
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||
#else
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||
#endif
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Op offloading
|
||||
//------------------------------------------------------------------------------
|
||||
@@ -5023,6 +5623,18 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
||||
}
|
||||
func = ggml_cl_mul;
|
||||
break;
|
||||
case GGML_OP_DIV:
|
||||
if (!any_on_device) {
|
||||
return false;
|
||||
}
|
||||
func = ggml_cl_div;
|
||||
break;
|
||||
case GGML_OP_SUB:
|
||||
if (!any_on_device) {
|
||||
return false;
|
||||
}
|
||||
func = ggml_cl_sub;
|
||||
break;
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(tensor)) {
|
||||
case GGML_UNARY_OP_GELU:
|
||||
@@ -5049,6 +5661,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
||||
}
|
||||
func = ggml_cl_relu;
|
||||
break;
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
if (!any_on_device) {
|
||||
return false;
|
||||
}
|
||||
func = ggml_cl_sigmoid;
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
} break;
|
||||
@@ -5070,6 +5688,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
||||
}
|
||||
func = ggml_cl_rms_norm;
|
||||
break;
|
||||
case GGML_OP_GROUP_NORM:
|
||||
if (!any_on_device) {
|
||||
return false;
|
||||
}
|
||||
func = ggml_cl_group_norm;
|
||||
break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
|
||||
return false;
|
||||
@@ -5115,6 +5739,18 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
||||
}
|
||||
func = ggml_cl_im2col;
|
||||
break;
|
||||
case GGML_OP_ARGSORT:
|
||||
if (!any_on_device) {
|
||||
return false;
|
||||
}
|
||||
func = ggml_cl_argsort;
|
||||
break;
|
||||
case GGML_OP_SUM_ROWS:
|
||||
if (!any_on_device) {
|
||||
return false;
|
||||
}
|
||||
func = ggml_cl_sum_rows;
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user