mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	examples : add example for batched decoding
This commit is contained in:
		
							
								
								
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -51,6 +51,7 @@ models-mnt
 | 
			
		||||
/save-load-state
 | 
			
		||||
/server
 | 
			
		||||
/simple
 | 
			
		||||
/batched
 | 
			
		||||
/speculative
 | 
			
		||||
/parallel
 | 
			
		||||
/train-text-from-scratch
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										5
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										5
									
								
								Makefile
									
									
									
									
									
								
							@@ -1,5 +1,5 @@
 | 
			
		||||
# Define the default target now so that it is always the first target
 | 
			
		||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative parallel tests/test-c.o
 | 
			
		||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative parallel tests/test-c.o
 | 
			
		||||
 | 
			
		||||
# Binaries only useful for tests
 | 
			
		||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama
 | 
			
		||||
@@ -519,6 +519,9 @@ main: examples/main/main.cpp                                  build-info.h ggml.
 | 
			
		||||
simple: examples/simple/simple.cpp                            build-info.h ggml.o llama.o common.o $(OBJS)
 | 
			
		||||
	$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
 | 
			
		||||
 | 
			
		||||
batched: examples/batched/batched.cpp                         build-info.h ggml.o llama.o common.o $(OBJS)
 | 
			
		||||
	$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
 | 
			
		||||
 | 
			
		||||
quantize: examples/quantize/quantize.cpp                      build-info.h ggml.o llama.o $(OBJS)
 | 
			
		||||
	$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -23,6 +23,7 @@ else()
 | 
			
		||||
    add_subdirectory(train-text-from-scratch)
 | 
			
		||||
    add_subdirectory(convert-llama2c-to-ggml)
 | 
			
		||||
    add_subdirectory(simple)
 | 
			
		||||
    add_subdirectory(batched)
 | 
			
		||||
    add_subdirectory(speculative)
 | 
			
		||||
    add_subdirectory(parallel)
 | 
			
		||||
    add_subdirectory(embd-input)
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										5
									
								
								examples/batched/CMakeLists.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								examples/batched/CMakeLists.txt
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,5 @@
 | 
			
		||||
set(TARGET batched)
 | 
			
		||||
add_executable(${TARGET} batched.cpp)
 | 
			
		||||
install(TARGETS ${TARGET} RUNTIME)
 | 
			
		||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
 | 
			
		||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
 | 
			
		||||
							
								
								
									
										44
									
								
								examples/batched/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										44
									
								
								examples/batched/README.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,44 @@
 | 
			
		||||
# llama.cpp/example/batched
 | 
			
		||||
 | 
			
		||||
The example demonstrates batched generation from a given prompt
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
./batched ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4
 | 
			
		||||
 | 
			
		||||
...
 | 
			
		||||
 | 
			
		||||
main: n_len = 32, n_ctx = 2048, n_parallel = 4, n_kv_req = 113
 | 
			
		||||
 | 
			
		||||
 Hello my name is
 | 
			
		||||
 | 
			
		||||
main: generating 4 sequences ...
 | 
			
		||||
 | 
			
		||||
main: stream 0 finished
 | 
			
		||||
main: stream 1 finished
 | 
			
		||||
main: stream 2 finished
 | 
			
		||||
main: stream 3 finished
 | 
			
		||||
 | 
			
		||||
sequence 0:
 | 
			
		||||
 | 
			
		||||
Hello my name is Shirley. I am a 25-year-old female who has been working for over 5 years as a b
 | 
			
		||||
 | 
			
		||||
sequence 1:
 | 
			
		||||
 | 
			
		||||
Hello my name is Renee and I'm a 32 year old female from the United States. I'm looking for a man between
 | 
			
		||||
 | 
			
		||||
sequence 2:
 | 
			
		||||
 | 
			
		||||
Hello my name is Diana. I am looking for a housekeeping job. I have experience with children and have my own transportation. I am
 | 
			
		||||
 | 
			
		||||
sequence 3:
 | 
			
		||||
 | 
			
		||||
Hello my name is Cody. I am a 3 year old neutered male. I am a very friendly cat. I am very playful and
 | 
			
		||||
 | 
			
		||||
main: decoded 108 tokens in 3.57 s, speed: 30.26 t/s
 | 
			
		||||
 | 
			
		||||
llama_print_timings:        load time =   587.00 ms
 | 
			
		||||
llama_print_timings:      sample time =     2.56 ms /   112 runs   (    0.02 ms per token, 43664.72 tokens per second)
 | 
			
		||||
llama_print_timings: prompt eval time =  4089.11 ms /   118 tokens (   34.65 ms per token,    28.86 tokens per second)
 | 
			
		||||
llama_print_timings:        eval time =     0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
 | 
			
		||||
llama_print_timings:       total time =  4156.04 ms
 | 
			
		||||
```
 | 
			
		||||
							
								
								
									
										243
									
								
								examples/batched/batched.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										243
									
								
								examples/batched/batched.cpp
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,243 @@
 | 
			
		||||
#include "common.h"
 | 
			
		||||
#include "llama.h"
 | 
			
		||||
 | 
			
		||||
#include <cmath>
 | 
			
		||||
#include <cstdio>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
int main(int argc, char ** argv) {
 | 
			
		||||
    gpt_params params;
 | 
			
		||||
 | 
			
		||||
    if (argc == 1 || argv[1][0] == '-') {
 | 
			
		||||
        printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL]\n" , argv[0]);
 | 
			
		||||
        return 1 ;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int n_parallel = 1;
 | 
			
		||||
 | 
			
		||||
    if (argc >= 2) {
 | 
			
		||||
        params.model = argv[1];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (argc >= 3) {
 | 
			
		||||
        params.prompt = argv[2];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (argc >= 4) {
 | 
			
		||||
        n_parallel = std::atoi(argv[3]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.prompt.empty()) {
 | 
			
		||||
        params.prompt = "Hello my name is";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // total length of the sequences including the prompt
 | 
			
		||||
    const int n_len = 32;
 | 
			
		||||
 | 
			
		||||
    // init LLM
 | 
			
		||||
 | 
			
		||||
    llama_backend_init(params.numa);
 | 
			
		||||
 | 
			
		||||
    llama_context_params ctx_params = llama_context_default_params();
 | 
			
		||||
 | 
			
		||||
    ctx_params.seed  = 1234;
 | 
			
		||||
    ctx_params.n_ctx = 2048;
 | 
			
		||||
 | 
			
		||||
    llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
 | 
			
		||||
 | 
			
		||||
    if (model == NULL) {
 | 
			
		||||
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | 
			
		||||
 | 
			
		||||
    if (ctx == NULL) {
 | 
			
		||||
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // tokenize the prompt
 | 
			
		||||
 | 
			
		||||
    std::vector<llama_token> tokens_list;
 | 
			
		||||
    tokens_list = ::llama_tokenize(ctx, params.prompt, true);
 | 
			
		||||
 | 
			
		||||
    const int n_ctx    = llama_n_ctx(ctx);
 | 
			
		||||
    const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
 | 
			
		||||
 | 
			
		||||
    LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_parallel, n_kv_req);
 | 
			
		||||
 | 
			
		||||
    // make sure the KV cache is big enough to hold all the prompt and generated tokens
 | 
			
		||||
    if (n_kv_req > n_ctx) {
 | 
			
		||||
        LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
 | 
			
		||||
        LOG_TEE("%s:        either reduce n_parallel or increase n_ctx\n", __func__);
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // print the prompt token-by-token
 | 
			
		||||
 | 
			
		||||
    fprintf(stderr, "\n");
 | 
			
		||||
 | 
			
		||||
    for (auto id : tokens_list) {
 | 
			
		||||
        fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fflush(stderr);
 | 
			
		||||
 | 
			
		||||
    // create a llama_batch with size 512
 | 
			
		||||
    // we use this object to submit token data for decoding
 | 
			
		||||
 | 
			
		||||
    llama_batch batch = llama_batch_init(512, 0);
 | 
			
		||||
 | 
			
		||||
    // evaluate the initial prompt
 | 
			
		||||
    batch.n_tokens = tokens_list.size();
 | 
			
		||||
 | 
			
		||||
    for (int32_t i = 0; i < batch.n_tokens; i++) {
 | 
			
		||||
        batch.token[i]  = tokens_list[i];
 | 
			
		||||
        batch.pos[i]    = i;
 | 
			
		||||
        batch.seq_id[i] = 0;
 | 
			
		||||
        batch.logits[i] = false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // llama_decode will output logits only for the last token of the prompt
 | 
			
		||||
    batch.logits[batch.n_tokens - 1] = true;
 | 
			
		||||
 | 
			
		||||
    if (llama_decode(ctx, batch, params.n_threads) != 0) {
 | 
			
		||||
        LOG_TEE("%s: llama_decode() failed\n", __func__);
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // assign the system KV cache to all parallel sequences
 | 
			
		||||
    // this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
 | 
			
		||||
    for (int32_t i = 1; i < n_parallel; ++i) {
 | 
			
		||||
        llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (n_parallel > 1) {
 | 
			
		||||
        LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // main loop
 | 
			
		||||
 | 
			
		||||
    // we will store the parallel decoded sequences in this vector
 | 
			
		||||
    std::vector<std::string> streams(n_parallel);
 | 
			
		||||
 | 
			
		||||
    // remember the batch index of the last token for each parallel sequence
 | 
			
		||||
    // we need this to determine which logits to sample from
 | 
			
		||||
    std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
 | 
			
		||||
 | 
			
		||||
    int n_cur    = batch.n_tokens;
 | 
			
		||||
    int n_decode = 0;
 | 
			
		||||
 | 
			
		||||
    const auto t_main_start = ggml_time_us();
 | 
			
		||||
 | 
			
		||||
    while (n_cur <= n_len) {
 | 
			
		||||
        // evaluate the current batch with the transformer model
 | 
			
		||||
        if (llama_decode(ctx, batch, params.n_threads)) {
 | 
			
		||||
            fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
 | 
			
		||||
            return 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // prepare the next batch
 | 
			
		||||
        batch.n_tokens = 0;
 | 
			
		||||
 | 
			
		||||
        // sample the next token for each parallel sequence / stream
 | 
			
		||||
        for (int32_t i = 0; i < n_parallel; ++i) {
 | 
			
		||||
            if (i_batch[i] < 0) {
 | 
			
		||||
                // the stream has already finished
 | 
			
		||||
                continue;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            auto n_vocab = llama_n_vocab(ctx);
 | 
			
		||||
            auto logits  = llama_get_logits_ith(ctx, i_batch[i]);
 | 
			
		||||
 | 
			
		||||
            std::vector<llama_token_data> candidates;
 | 
			
		||||
            candidates.reserve(n_vocab);
 | 
			
		||||
 | 
			
		||||
            for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | 
			
		||||
                candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | 
			
		||||
 | 
			
		||||
            const int   top_k = 40;
 | 
			
		||||
            const float top_p = 0.9f;
 | 
			
		||||
            const float temp  = 0.4f;
 | 
			
		||||
 | 
			
		||||
            llama_sample_top_k(ctx, &candidates_p, top_k, 1);
 | 
			
		||||
            llama_sample_top_p(ctx, &candidates_p, top_p, 1);
 | 
			
		||||
            llama_sample_temp (ctx, &candidates_p, temp);
 | 
			
		||||
 | 
			
		||||
            const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
 | 
			
		||||
 | 
			
		||||
            //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
 | 
			
		||||
 | 
			
		||||
            // is it an end of stream? -> mark the stream as finished
 | 
			
		||||
            if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) {
 | 
			
		||||
                i_batch[i] = -1;
 | 
			
		||||
                LOG_TEE("\n");
 | 
			
		||||
                if (n_parallel > 1) {
 | 
			
		||||
                    LOG_TEE("%s: stream %d finished", __func__, i);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                continue;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // if there is only one stream, we print immediately to stdout
 | 
			
		||||
            if (n_parallel == 1) {
 | 
			
		||||
                LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
 | 
			
		||||
                fflush(stdout);
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            streams[i] += llama_token_to_piece(ctx, new_token_id);
 | 
			
		||||
 | 
			
		||||
            // push this new token for next evaluation
 | 
			
		||||
            batch.token [batch.n_tokens] = new_token_id;
 | 
			
		||||
            batch.pos   [batch.n_tokens] = n_cur;
 | 
			
		||||
            batch.seq_id[batch.n_tokens] = i;
 | 
			
		||||
            batch.logits[batch.n_tokens] = true;
 | 
			
		||||
 | 
			
		||||
            i_batch[i] = batch.n_tokens;
 | 
			
		||||
 | 
			
		||||
            batch.n_tokens += 1;
 | 
			
		||||
 | 
			
		||||
            n_decode += 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // all streams are finished
 | 
			
		||||
        if (batch.n_tokens == 0) {
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        n_cur += 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    LOG_TEE("\n");
 | 
			
		||||
 | 
			
		||||
    if (n_parallel > 1) {
 | 
			
		||||
        LOG_TEE("\n");
 | 
			
		||||
 | 
			
		||||
        for (int32_t i = 0; i < n_parallel; ++i) {
 | 
			
		||||
            LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    const auto t_main_end = ggml_time_us();
 | 
			
		||||
 | 
			
		||||
    LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | 
			
		||||
            __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
 | 
			
		||||
 | 
			
		||||
    llama_print_timings(ctx);
 | 
			
		||||
 | 
			
		||||
    fprintf(stderr, "\n");
 | 
			
		||||
 | 
			
		||||
    llama_batch_free(batch);
 | 
			
		||||
 | 
			
		||||
    llama_free(ctx);
 | 
			
		||||
    llama_free_model(model);
 | 
			
		||||
 | 
			
		||||
    llama_backend_free();
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
}
 | 
			
		||||
@@ -1,12 +1,9 @@
 | 
			
		||||
# llama.cpp/example/simple
 | 
			
		||||
 | 
			
		||||
The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt.
 | 
			
		||||
The example demonstrates single-batch as well as parallel generation.
 | 
			
		||||
 | 
			
		||||
## Single-batch generation
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 1
 | 
			
		||||
./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is"
 | 
			
		||||
 | 
			
		||||
...
 | 
			
		||||
 | 
			
		||||
@@ -22,46 +19,3 @@ llama_print_timings: prompt eval time =   655.63 ms /    10 tokens (   65.56 ms
 | 
			
		||||
llama_print_timings:        eval time =  2180.97 ms /    27 runs   (   80.78 ms per token,    12.38 tokens per second)
 | 
			
		||||
llama_print_timings:       total time =  2891.13 ms
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Parallel generation
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4
 | 
			
		||||
 | 
			
		||||
...
 | 
			
		||||
 | 
			
		||||
main: n_len = 32, n_ctx = 2048, n_parallel = 4, n_kv_req = 113
 | 
			
		||||
 | 
			
		||||
 Hello my name is
 | 
			
		||||
 | 
			
		||||
main: generating 4 sequences ...
 | 
			
		||||
 | 
			
		||||
main: stream 0 finished
 | 
			
		||||
main: stream 1 finished
 | 
			
		||||
main: stream 2 finished
 | 
			
		||||
main: stream 3 finished
 | 
			
		||||
 | 
			
		||||
sequence 0:
 | 
			
		||||
 | 
			
		||||
Hello my name is Shirley. I am a 25-year-old female who has been working for over 5 years as a b
 | 
			
		||||
 | 
			
		||||
sequence 1:
 | 
			
		||||
 | 
			
		||||
Hello my name is Renee and I'm a 32 year old female from the United States. I'm looking for a man between
 | 
			
		||||
 | 
			
		||||
sequence 2:
 | 
			
		||||
 | 
			
		||||
Hello my name is Diana. I am looking for a housekeeping job. I have experience with children and have my own transportation. I am
 | 
			
		||||
 | 
			
		||||
sequence 3:
 | 
			
		||||
 | 
			
		||||
Hello my name is Cody. I am a 3 year old neutered male. I am a very friendly cat. I am very playful and
 | 
			
		||||
 | 
			
		||||
main: decoded 108 tokens in 3.57 s, speed: 30.26 t/s
 | 
			
		||||
 | 
			
		||||
llama_print_timings:        load time =   587.00 ms
 | 
			
		||||
llama_print_timings:      sample time =     2.56 ms /   112 runs   (    0.02 ms per token, 43664.72 tokens per second)
 | 
			
		||||
llama_print_timings: prompt eval time =  4089.11 ms /   118 tokens (   34.65 ms per token,    28.86 tokens per second)
 | 
			
		||||
llama_print_timings:        eval time =     0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
 | 
			
		||||
llama_print_timings:       total time =  4156.04 ms
 | 
			
		||||
```
 | 
			
		||||
 
 | 
			
		||||
@@ -10,12 +10,10 @@ int main(int argc, char ** argv) {
 | 
			
		||||
    gpt_params params;
 | 
			
		||||
 | 
			
		||||
    if (argc == 1 || argv[1][0] == '-') {
 | 
			
		||||
        printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL]\n" , argv[0]);
 | 
			
		||||
        printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
 | 
			
		||||
        return 1 ;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int n_parallel = 1;
 | 
			
		||||
 | 
			
		||||
    if (argc >= 2) {
 | 
			
		||||
        params.model = argv[1];
 | 
			
		||||
    }
 | 
			
		||||
@@ -24,15 +22,11 @@ int main(int argc, char ** argv) {
 | 
			
		||||
        params.prompt = argv[2];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (argc >= 4) {
 | 
			
		||||
        n_parallel = std::atoi(argv[3]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.prompt.empty()) {
 | 
			
		||||
        params.prompt = "Hello my name is";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // total length of the sequences including the prompt
 | 
			
		||||
    // total length of the sequence including the prompt
 | 
			
		||||
    const int n_len = 32;
 | 
			
		||||
 | 
			
		||||
    // init LLM
 | 
			
		||||
@@ -64,9 +58,9 @@ int main(int argc, char ** argv) {
 | 
			
		||||
    tokens_list = ::llama_tokenize(ctx, params.prompt, true);
 | 
			
		||||
 | 
			
		||||
    const int n_ctx    = llama_n_ctx(ctx);
 | 
			
		||||
    const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
 | 
			
		||||
    const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
 | 
			
		||||
 | 
			
		||||
    LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_parallel, n_kv_req);
 | 
			
		||||
    LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
 | 
			
		||||
 | 
			
		||||
    // make sure the KV cache is big enough to hold all the prompt and generated tokens
 | 
			
		||||
    if (n_kv_req > n_ctx) {
 | 
			
		||||
@@ -108,25 +102,8 @@ int main(int argc, char ** argv) {
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // assign the system KV cache to all parallel sequences
 | 
			
		||||
    // this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
 | 
			
		||||
    for (int32_t i = 1; i < n_parallel; ++i) {
 | 
			
		||||
        llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (n_parallel > 1) {
 | 
			
		||||
        LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // main loop
 | 
			
		||||
 | 
			
		||||
    // we will store the parallel decoded sequences in this vector
 | 
			
		||||
    std::vector<std::string> streams(n_parallel);
 | 
			
		||||
 | 
			
		||||
    // remember the batch index of the last token for each parallel sequence
 | 
			
		||||
    // we need this to determine which logits to sample from
 | 
			
		||||
    std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
 | 
			
		||||
 | 
			
		||||
    int n_cur    = batch.n_tokens;
 | 
			
		||||
    int n_decode = 0;
 | 
			
		||||
 | 
			
		||||
@@ -139,18 +116,10 @@ int main(int argc, char ** argv) {
 | 
			
		||||
            return 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // prepare the next batch
 | 
			
		||||
        batch.n_tokens = 0;
 | 
			
		||||
 | 
			
		||||
        // sample the next token for each parallel sequence / stream
 | 
			
		||||
        for (int32_t i = 0; i < n_parallel; ++i) {
 | 
			
		||||
            if (i_batch[i] < 0) {
 | 
			
		||||
                // the stream has already finished
 | 
			
		||||
                continue;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
        // sample the next token
 | 
			
		||||
        {
 | 
			
		||||
            auto n_vocab = llama_n_vocab(ctx);
 | 
			
		||||
            auto logits  = llama_get_logits_ith(ctx, i_batch[i]);
 | 
			
		||||
            auto logits  = llama_get_logits_ith(ctx, batch.n_tokens - 1);
 | 
			
		||||
 | 
			
		||||
            std::vector<llama_token_data> candidates;
 | 
			
		||||
            candidates.reserve(n_vocab);
 | 
			
		||||
@@ -161,68 +130,38 @@ int main(int argc, char ** argv) {
 | 
			
		||||
 | 
			
		||||
            llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | 
			
		||||
 | 
			
		||||
            const int   top_k = 40;
 | 
			
		||||
            const float top_p = 0.9f;
 | 
			
		||||
            const float temp  = 0.4f;
 | 
			
		||||
            // sample the most likely token
 | 
			
		||||
            const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
 | 
			
		||||
 | 
			
		||||
            llama_sample_top_k(ctx, &candidates_p, top_k, 1);
 | 
			
		||||
            llama_sample_top_p(ctx, &candidates_p, top_p, 1);
 | 
			
		||||
            llama_sample_temp (ctx, &candidates_p, temp);
 | 
			
		||||
 | 
			
		||||
            const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
 | 
			
		||||
 | 
			
		||||
            //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
 | 
			
		||||
 | 
			
		||||
            // is it an end of stream? -> mark the stream as finished
 | 
			
		||||
            // is it an end of stream?
 | 
			
		||||
            if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) {
 | 
			
		||||
                i_batch[i] = -1;
 | 
			
		||||
                LOG_TEE("\n");
 | 
			
		||||
                if (n_parallel > 1) {
 | 
			
		||||
                    LOG_TEE("%s: stream %d finished", __func__, i);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                continue;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // if there is only one stream, we print immediately to stdout
 | 
			
		||||
            if (n_parallel == 1) {
 | 
			
		||||
                LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
 | 
			
		||||
                fflush(stdout);
 | 
			
		||||
            }
 | 
			
		||||
            LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
 | 
			
		||||
            fflush(stdout);
 | 
			
		||||
 | 
			
		||||
            streams[i] += llama_token_to_piece(ctx, new_token_id);
 | 
			
		||||
            // prepare the next batch
 | 
			
		||||
            batch.n_tokens = 0;
 | 
			
		||||
 | 
			
		||||
            // push this new token for next evaluation
 | 
			
		||||
            batch.token [batch.n_tokens] = new_token_id;
 | 
			
		||||
            batch.pos   [batch.n_tokens] = n_cur;
 | 
			
		||||
            batch.seq_id[batch.n_tokens] = i;
 | 
			
		||||
            batch.seq_id[batch.n_tokens] = 0;
 | 
			
		||||
            batch.logits[batch.n_tokens] = true;
 | 
			
		||||
 | 
			
		||||
            i_batch[i] = batch.n_tokens;
 | 
			
		||||
 | 
			
		||||
            batch.n_tokens += 1;
 | 
			
		||||
 | 
			
		||||
            n_decode += 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // all streams are finished
 | 
			
		||||
        if (batch.n_tokens == 0) {
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        n_cur += 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    LOG_TEE("\n");
 | 
			
		||||
 | 
			
		||||
    if (n_parallel > 1) {
 | 
			
		||||
        LOG_TEE("\n");
 | 
			
		||||
 | 
			
		||||
        for (int32_t i = 0; i < n_parallel; ++i) {
 | 
			
		||||
            LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    const auto t_main_end = ggml_time_us();
 | 
			
		||||
 | 
			
		||||
    LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user