mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	IQ4_NL: 4-bit non-linear quants with blocks of 32 (#5590)
* iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * iq4_nl: Fix after merging with master * iq4_nl: another fix after merging with master * Use IQ4_NL instead of Q4_K when using k-quants is not possible * Fix typo that makes several tests fail * It was the ggml_vdotq thing missed inside the brackets --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
		
							
								
								
									
										17
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										17
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -2527,6 +2527,7 @@ struct llama_model_loader { | ||||
|                 case GGML_TYPE_IQ2_XS:  ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS;  break; | ||||
|                 case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; | ||||
|                 case GGML_TYPE_IQ1_S:   ftype = LLAMA_FTYPE_MOSTLY_IQ1_S;   break; | ||||
|                 case GGML_TYPE_IQ4_NL:  ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL;  break; | ||||
|                 default: | ||||
|                     { | ||||
|                         LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); | ||||
| @@ -2877,6 +2878,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { | ||||
|         case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small"; | ||||
|         case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw"; | ||||
|         case LLAMA_FTYPE_MOSTLY_IQ1_S  :return "IQ1_S - 1.5625 bpw"; | ||||
|         case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; | ||||
|  | ||||
|         default: return "unknown, may not work"; | ||||
|     } | ||||
| @@ -10354,6 +10356,9 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty | ||||
|             new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; | ||||
|         } | ||||
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; | ||||
|         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL && qs.model.hparams.n_gqa() >= 4) { | ||||
|             new_type = GGML_TYPE_Q5_K; | ||||
|         } | ||||
|         else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && | ||||
|                 use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K; | ||||
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; | ||||
| @@ -10406,6 +10411,9 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty | ||||
|                 if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; | ||||
|             } | ||||
|         } | ||||
|         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL && !qs.has_imatrix) { | ||||
|             if (i_layer < n_layer/8) new_type = GGML_TYPE_Q5_K; | ||||
|         } | ||||
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; | ||||
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { | ||||
|             new_type = GGML_TYPE_Q5_K; | ||||
| @@ -10422,7 +10430,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty | ||||
|         if (arch != LLM_ARCH_FALCON) { | ||||
|             if (qs.model.hparams.n_expert == 8) { | ||||
|                 if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || | ||||
|                     ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || | ||||
|                     ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL  || | ||||
|                     ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { | ||||
|                     new_type = GGML_TYPE_Q5_K; | ||||
|                 } | ||||
| @@ -10489,8 +10497,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty | ||||
|             case GGML_TYPE_IQ2_XS: | ||||
|             case GGML_TYPE_IQ3_XXS: | ||||
|             case GGML_TYPE_IQ1_S: | ||||
|             case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break; | ||||
|             case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break; | ||||
|             case GGML_TYPE_Q2_K: | ||||
|             case GGML_TYPE_Q3_K: new_type = GGML_TYPE_IQ4_NL; break; | ||||
|             case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; | ||||
|             case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; | ||||
|             case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; | ||||
| @@ -10531,7 +10539,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s | ||||
|         case LLAMA_FTYPE_MOSTLY_IQ2_XXS: quantized_type = GGML_TYPE_IQ2_XXS; break; | ||||
|         case LLAMA_FTYPE_MOSTLY_IQ2_XS:  quantized_type = GGML_TYPE_IQ2_XS;  break; | ||||
|         case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break; | ||||
|         case LLAMA_FTYPE_MOSTLY_IQ1_S:   quantized_type = GGML_TYPE_IQ1_S  ; break; | ||||
|         case LLAMA_FTYPE_MOSTLY_IQ1_S:   quantized_type = GGML_TYPE_IQ1_S;   break; | ||||
|         case LLAMA_FTYPE_MOSTLY_IQ4_NL:  quantized_type = GGML_TYPE_IQ4_NL;  break; | ||||
|  | ||||
|         default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); | ||||
|     } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Kawrakow
					Kawrakow