llama : remove KV cache defragmentation logic (#15473)

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-08-22 12:22:13 +03:00
committed by GitHub
parent ad5c975c2d
commit 9ebebef62f
16 changed files with 32 additions and 440 deletions

View File

@@ -525,39 +525,11 @@ llama_memory_context_ptr llama_kv_cache::init_full() {
}
llama_memory_context_ptr llama_kv_cache::init_update(llama_context * lctx, bool optimize) {
GGML_UNUSED(optimize);
bool do_shift = get_has_shift();
defrag_info dinfo;
// see if we need to defrag
if (n_stream == 1) {
// note : for now do not consider defrag for n_stream > 1
const auto & cells = v_cells[seq_to_stream[0]];
bool do_defrag = optimize;
const auto thold = lctx->get_cparams().defrag_thold;
if (!do_defrag && thold > 0.0f) {
const auto n_kv = cells.used_max_p1();
// - do not defrag small contexts (i.e. < 2048 tokens)
// - count the padding towards the number of used tokens
const float fragmentation = n_kv >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n_kv)) : 0.0f;
if (fragmentation > thold) {
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
do_defrag = true;
}
}
if (do_defrag) {
dinfo = defrag_prepare(lctx->graph_max_nodes());
}
}
return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(dinfo), std::move(sc_info));
return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(sc_info));
}
llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector<llama_ubatch> & ubatches) {
@@ -629,7 +601,7 @@ llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector<llama_
return res;
}
bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const defrag_info & dinfo, const stream_copy_info & sc_info) {
bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info) {
bool updated = false;
auto * sched = lctx->get_sched();
@@ -699,53 +671,6 @@ bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const defrag_in
}
}
if (!dinfo.empty()) {
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
// note: for now do not consider defrag for n_stream > 1
auto & cells = v_cells[seq_to_stream[0]];
auto & head = v_heads[seq_to_stream[0]];
// apply moves:
{
const auto n_kv = dinfo.ids.size();
for (uint32_t i = 0; i < n_kv; ++i) {
assert(dinfo.ids[i] <= n_kv);
if (dinfo.ids[i] == n_kv || dinfo.ids[i] == i) {
continue;
}
cells.mv(i, dinfo.ids[i]);
}
// reset the head so we can find the first free slot during the next ubatch
head = 0;
}
ggml_backend_sched_reset(sched);
auto * res = lctx->get_gf_res_reserve();
res->reset();
auto * gf = build_graph_defrag(res, lctx, dinfo);
if (!ggml_backend_sched_alloc_graph(sched, gf)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute graph for defrag\n", __func__);
return updated;
}
res->set_inputs(nullptr);
if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
LLAMA_LOG_ERROR("%s: failed to compute defrag\n", __func__);
return updated;
}
updated = true;
}
return updated;
}
@@ -1525,283 +1450,6 @@ ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_co
return gf;
}
ggml_cgraph * llama_kv_cache::build_graph_defrag(
llm_graph_result * res,
llama_context * lctx,
const defrag_info & dinfo) const {
auto * ctx = res->get_ctx();
auto * gf = res->get_gf();
GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag");
const auto & cells = v_cells[0];
const auto & ids = dinfo.ids;
const auto & cparams = lctx->get_cparams();
#if 0
// CPU defrag
//
// TODO: optimizations are possible:
// - multiple threads
// - avoid copying to the host memory when already there
//
// likely not worth the effort, as we have ggml_graph based defrag
//
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const uint32_t kv_size = size;
std::vector<uint8_t> buf_k;
std::vector<uint8_t> buf_v;
for (uint32_t il = 0; il < n_layer; ++il) {
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
const size_t v_size_el = ggml_type_size(v_l[il]->type);
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
buf_k.resize(k_size);
buf_v.resize(v_size);
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
// batch move [i, i+nm) to [id, id+nm)
// note: cells can move only to a lower index
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t id = ids[i];
if (i == id || id == n_kv) {
continue;
}
uint32_t nm = 1;
while (i + nm < n_kv && ids[i + nm] == id + nm) {
nm++;
}
// move keys
{
const int64_t os = i*k_size_row;
const int64_t od = id*k_size_row;
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
}
// move values (note: they are transposed)
{
const int64_t os = i;
const int64_t od = id;
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
}
}
i += nm - 1;
}
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
for (uint32_t i = 0; i < ids.size(); ++i) {
const uint32_t id = ids[i];
if (i == id || id == ids.size()) {
continue;
}
uint32_t nm = 1;
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
nm++;
}
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k,
n_embd_k_gqa, nm,
ggml_row_size(layer.k->type, n_embd_k_gqa),
ggml_row_size(layer.k->type, n_embd_k_gqa*i));
ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k,
n_embd_k_gqa, nm,
ggml_row_size(layer.k->type, n_embd_k_gqa),
ggml_row_size(layer.k->type, n_embd_k_gqa*id));
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
if (cparams.flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx, layer.v,
n_embd_v_gqa, nm,
ggml_row_size(layer.v->type, n_embd_v_gqa),
ggml_row_size(layer.v->type, n_embd_v_gqa*i));
view_v_dst = ggml_view_2d(ctx, layer.v,
n_embd_v_gqa, nm,
ggml_row_size(layer.v->type, n_embd_v_gqa),
ggml_row_size(layer.v->type, n_embd_v_gqa*id));
} else {
view_v_src = ggml_view_2d(ctx, layer.v,
nm, n_embd_v_gqa,
ggml_row_size(layer.v->type, cells.size()),
ggml_row_size(layer.v->type, i));
view_v_dst = ggml_view_2d(ctx, layer.v,
nm, n_embd_v_gqa,
ggml_row_size(layer.v->type, cells.size()),
ggml_row_size(layer.v->type, id));
}
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
}
i += nm - 1;
}
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
#endif
return gf;
}
llama_kv_cache::defrag_info llama_kv_cache::defrag_prepare(int32_t n_max_nodes) const {
GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag");
const auto & cells = v_cells[0];
const uint32_t n_layer = layers.size();
const uint32_t n_kv = cells.used_max_p1();
const uint32_t n_used = cells.get_used();
assert(n_used <= n_kv);
//const int64_t t_start = ggml_time_us();
// number of cells moved
uint32_t n_moves = 0;
// each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
// - source view, destination view, copy operation
// - x2 for keys and values
//const uint32_t max_moves = max_nodes()/(6*n_layer);
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
// determine which KV cells to move where
defrag_info res;
auto & ids = res.ids;
ids.resize(n_kv, n_kv);
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
if (!cells.is_empty(i0)) {
ids[i0] = i0;
continue;
}
// found a hole - fill it with data from the end of the cache
uint32_t nh = 1;
// determine the size of the hole
while (i0 + nh < n_used && cells.is_empty(i0 + nh)) {
nh++;
}
uint32_t nf = 0;
uint32_t is = n_kv - 1;
// starting from the end, find nh non-empty cells
for (; is > i0; --is) {
if (cells.is_empty(is) || ids[is] != n_kv) {
continue;
}
// non-empty cell which is not yet moved
nf++;
if (nf == nh) {
break;
}
}
// this can only happen if `n_used` is not accurate, which would be a bug
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
nf = 0;
uint32_t i1 = is;
// are we moving a continuous block of memory?
bool cont = false;
// should we stop searching for the next move?
bool stop = false;
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
if (cells.is_empty(i1) || ids[i1] != n_kv) {
if (n_moves == max_moves) {
stop = true;
break;
}
cont = false;
continue;
}
// this cell goes to (i0 + nf)
ids[i1] = i0 + nf;
if (!cont) {
n_moves++;
cont = true;
}
nf++;
if (nf == nh) {
break;
}
}
if (stop || n_moves == max_moves) {
break;
}
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
i0 += nh - 1;
}
if (n_moves == 0) {
return {};
}
LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
return res;
}
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
assert(p0 >= 0 && p1 >= 0);
@@ -2300,9 +1948,8 @@ llama_kv_cache_context::llama_kv_cache_context(
llama_kv_cache * kv,
llama_context * lctx,
bool do_shift,
defrag_info dinfo,
stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), dinfo(std::move(dinfo)), sc_info(std::move(sc_info)) {
if (!do_shift && this->dinfo.empty() && this->sc_info.empty()) {
stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), sc_info(std::move(sc_info)) {
if (!do_shift && this->sc_info.empty()) {
status = LLAMA_MEMORY_STATUS_NO_UPDATE;
}
}
@@ -2330,7 +1977,7 @@ bool llama_kv_cache_context::apply() {
// no ubatches -> this is a KV cache update
if (ubatches.empty()) {
kv->update(lctx, do_shift, dinfo, sc_info);
kv->update(lctx, do_shift, sc_info);
return true;
}