mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-12 10:47:01 +00:00
CUDA: backwards pass for misc. ops, add tests (#11257)
* CUDA: backwards pass for misc. ops, add tests * remove restrict from pointers
This commit is contained in:
@@ -3,15 +3,15 @@
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static __global__ void k_get_rows(
|
||||
const void * src0, const int32_t * src1, dst_t * dst,
|
||||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||
const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
|
||||
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
|
||||
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
|
||||
|
||||
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
|
||||
@@ -22,10 +22,10 @@ static __global__ void k_get_rows(
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int iybs = i00 - i00%qk; // dst block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
@@ -39,15 +39,15 @@ static __global__ void k_get_rows(
|
||||
|
||||
template<typename src0_t, typename dst_t>
|
||||
static __global__ void k_get_rows_float(
|
||||
const src0_t * src0, const int32_t * src1, dst_t * dst,
|
||||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||
const src0_t * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
|
||||
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
|
||||
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
|
||||
|
||||
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
|
||||
@@ -58,14 +58,38 @@ static __global__ void k_get_rows_float(
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
|
||||
dst_row[i00] = src0_row[i00];
|
||||
}
|
||||
|
||||
template<typename grad_t, typename dst_t>
|
||||
static __global__ void k_get_rows_back_float(
|
||||
const grad_t * __restrict__ grad, const int32_t * __restrict__ rows, dst_t * __restrict__ dst, const int64_t ncols, const int64_t nrows_grad) {
|
||||
const int col = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
if (col >= ncols) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int dst_row = blockIdx.y*blockDim.y + threadIdx.y;
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (int64_t i = 0; i < nrows_grad; ++i) {
|
||||
if (rows[i] != dst_row) {
|
||||
continue;
|
||||
}
|
||||
sum += grad[i*ncols + col];
|
||||
}
|
||||
|
||||
dst[dst_row*ncols + col] = sum;
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq>
|
||||
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
static void get_rows_cuda(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
@@ -87,22 +111,25 @@ static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
||||
GGML_ASSERT(ne00 % 2 == 0);
|
||||
|
||||
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
GGML_UNUSED(dst);
|
||||
}
|
||||
|
||||
template<typename src0_t>
|
||||
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
static void get_rows_cuda_float(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(ne13 == 1);
|
||||
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
@@ -119,12 +146,12 @@ static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||
|
||||
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
GGML_UNUSED(dst);
|
||||
}
|
||||
@@ -132,42 +159,41 @@ static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
|
||||
const void * src0_d = (const void *) src0->data;
|
||||
const int32_t * src1_d = (const int32_t *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
||||
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||||
|
||||
const int32_t * src1_i32 = (const int32_t *) src1_d;
|
||||
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16:
|
||||
get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda_float(src0, src1, dst, (const half *) src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_F32:
|
||||
get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda_float(src0, src1, dst, (const float *) src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
default:
|
||||
// TODO: k-quants
|
||||
@@ -175,3 +201,34 @@ void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
|
||||
const ggml_tensor * src1 = dst->src[1]; // src1 in forward pass
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const int32_t * src1_d = (const int32_t *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
|
||||
GGML_ASSERT(ne02*ne03 == 1);
|
||||
GGML_ASSERT(ne12*ne13 == 1);
|
||||
GGML_ASSERT(ne2*ne3 == 1);
|
||||
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BACK_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + CUDA_GET_ROWS_BACK_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BACK_BLOCK_SIZE;
|
||||
const dim3 block_nums(block_num_x, ne1, 1);
|
||||
|
||||
k_get_rows_back_float<<<block_nums, block_dims, 0, stream>>>(src0_d, src1_d, dst_d, ne00, ne10);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user