mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	llama : support upcoming Qwen2 (#5037)
This commit is contained in:
		
							
								
								
									
										191
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										191
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -192,6 +192,7 @@ enum llm_arch { | ||||
|     LLM_ARCH_BLOOM, | ||||
|     LLM_ARCH_STABLELM, | ||||
|     LLM_ARCH_QWEN, | ||||
|     LLM_ARCH_QWEN2, | ||||
|     LLM_ARCH_PHI2, | ||||
|     LLM_ARCH_PLAMO, | ||||
|     LLM_ARCH_CODESHELL, | ||||
| @@ -212,6 +213,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = { | ||||
|     { LLM_ARCH_BLOOM,           "bloom"     }, | ||||
|     { LLM_ARCH_STABLELM,        "stablelm"  }, | ||||
|     { LLM_ARCH_QWEN,            "qwen"      }, | ||||
|     { LLM_ARCH_QWEN2,           "qwen2"     }, | ||||
|     { LLM_ARCH_PHI2,            "phi2"      }, | ||||
|     { LLM_ARCH_PLAMO,           "plamo"     }, | ||||
|     { LLM_ARCH_CODESHELL,       "codeshell" }, | ||||
| @@ -568,6 +570,23 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_QWEN2, | ||||
|         { | ||||
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" }, | ||||
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" }, | ||||
|             { LLM_TENSOR_OUTPUT,          "output" }, | ||||
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" }, | ||||
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" }, | ||||
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" }, | ||||
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" }, | ||||
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" }, | ||||
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" }, | ||||
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" }, | ||||
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" }, | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_PHI2, | ||||
|         { | ||||
| @@ -2869,6 +2888,17 @@ static void llm_load_hparams( | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_QWEN2: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); | ||||
|                 switch (hparams.n_layer) { | ||||
|                     case 24: model.type = e_model::MODEL_1B; break; | ||||
|                     case 32: model.type = e_model::MODEL_7B; break; | ||||
|                     case 40: model.type = e_model::MODEL_13B; break; | ||||
|                     case 80: model.type = e_model::MODEL_70B; break; | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_PHI2: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); | ||||
| @@ -3704,6 +3734,41 @@ static bool llm_load_tensors( | ||||
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff/2}); | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_QWEN2: | ||||
|                 { | ||||
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); | ||||
|  | ||||
|                     // output | ||||
|                     { | ||||
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); | ||||
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}); | ||||
|                     } | ||||
|  | ||||
|                     for (int i = 0; i < n_layer; ++i) { | ||||
|                         ggml_context * ctx_layer = ctx_for_layer(i); | ||||
|                         ggml_context * ctx_split = ctx_for_layer_split(i); | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); | ||||
|  | ||||
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}); | ||||
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}); | ||||
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}); | ||||
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); | ||||
|  | ||||
|                         // optional bias tensors | ||||
|                         layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd}); | ||||
|                         layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}); | ||||
|                         layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}); | ||||
|  | ||||
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); | ||||
|  | ||||
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}); | ||||
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}); | ||||
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}); | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_PHI2: | ||||
|                 { | ||||
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); | ||||
| @@ -5698,6 +5763,128 @@ struct llm_build_context { | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|     struct ggml_cgraph * build_qwen2() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
|         const int64_t n_embd_head = hparams.n_embd_head_v; | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_rot); | ||||
|  | ||||
|         struct ggml_tensor * cur; | ||||
|         struct ggml_tensor * inpL; | ||||
|  | ||||
|         inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); | ||||
|         cb(inpL, "inp_embd", -1); | ||||
|  | ||||
|         // inp_pos - contains the positions | ||||
|         struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); | ||||
|         cb(inp_pos, "inp_pos", -1); | ||||
|  | ||||
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|         struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); | ||||
|         cb(KQ_mask, "KQ_mask", -1); | ||||
|  | ||||
|         // shift the entire K-cache if needed | ||||
|         if (do_rope_shift) { | ||||
|             llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); | ||||
|         } | ||||
|  | ||||
|         for (int il = 0; il < n_layer; ++il) { | ||||
|             struct ggml_tensor * inpSA = inpL; | ||||
|  | ||||
|             // norm | ||||
|             cur = llm_build_norm(ctx0, inpL, hparams, | ||||
|                     model.layers[il].attn_norm, NULL, | ||||
|                     LLM_NORM_RMS, cb, il); | ||||
|             cb(cur, "attn_norm", il); | ||||
|  | ||||
|             // self-attention | ||||
|             { | ||||
|                 // compute Q and K and RoPE them | ||||
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|                 Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|  | ||||
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|                 Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|  | ||||
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|                 Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|  | ||||
|                 // these nodes are added to the graph together so that they are not reordered | ||||
|                 // by doing so, the number of splits in the graph is reduced | ||||
|                 ggml_build_forward_expand(gf, Qcur); | ||||
|                 ggml_build_forward_expand(gf, Kcur); | ||||
|                 ggml_build_forward_expand(gf, Vcur); | ||||
|  | ||||
|                 Qcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, | ||||
|                     hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|  | ||||
|                 Kcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, | ||||
|                     hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|  | ||||
|                 llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); | ||||
|  | ||||
|                 cur = llm_build_kqv(ctx0, model, hparams, kv_self, | ||||
|                         model.layers[il].wo, model.layers[il].bo, | ||||
|                         Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); | ||||
|                 cb(cur, "kqv_out", il); | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); | ||||
|             cb(ffn_inp, "ffn_inp", il); | ||||
|  | ||||
|             // feed-forward network | ||||
|             cur = llm_build_norm(ctx0, ffn_inp, hparams, | ||||
|                     model.layers[il].ffn_norm, NULL, | ||||
|                     LLM_NORM_RMS, cb, il); | ||||
|             cb(cur, "ffn_norm", il); | ||||
|  | ||||
|             cur = llm_build_ffn(ctx0, cur, | ||||
|                     model.layers[il].ffn_up,   NULL, | ||||
|                     model.layers[il].ffn_gate, NULL, | ||||
|                     model.layers[il].ffn_down, NULL, | ||||
|                     NULL, | ||||
|                     LLM_FFN_SILU, LLM_FFN_PAR, cb, il); | ||||
|             cb(cur, "ffn_out", il); | ||||
|  | ||||
|             cur = ggml_add(ctx0, cur, ffn_inp); | ||||
|             cb(cur, "l_out", il); | ||||
|  | ||||
|             // input for next layer | ||||
|             inpL = cur; | ||||
|         } | ||||
|  | ||||
|         cur = inpL; | ||||
|  | ||||
|         cur = llm_build_norm(ctx0, cur, hparams, | ||||
|                 model.output_norm, NULL, | ||||
|                 LLM_NORM_RMS, cb, -1); | ||||
|         cb(cur, "result_norm", -1); | ||||
|  | ||||
|         // lm_head | ||||
|         cur = ggml_mul_mat(ctx0, model.output, cur); | ||||
|         cb(cur, "result_output", -1); | ||||
|  | ||||
|         ggml_build_forward_expand(gf, cur); | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|     struct ggml_cgraph * build_phi2() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
| @@ -6324,6 +6511,10 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|             { | ||||
|                 result = llm.build_qwen(); | ||||
|             } break; | ||||
|         case LLM_ARCH_QWEN2: | ||||
|             { | ||||
|                 result = llm.build_qwen2(); | ||||
|             } break; | ||||
|         case LLM_ARCH_PHI2: | ||||
|             { | ||||
|                 result = llm.build_phi2(); | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Shijie
					Shijie