mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-28 08:31:25 +00:00
CANN: Resolve soft_max precision issue (#15730)
Previously, the slope tensor was set to fp16 to improve efficiency. While this worked correctly in FA, it caused precision issues in soft_max. This change applies different data types for different operators to balance both accuracy and performance.
This commit is contained in:
@@ -1425,21 +1425,25 @@ static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx,
|
||||
* @param start Starting exponent offset.
|
||||
* @param stop Stopping exponent offset (exclusive).
|
||||
* @param step Step size for the exponent increment.
|
||||
* @param dtype Data type for slope tensor.
|
||||
*/
|
||||
static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_buffer,
|
||||
float m, int64_t size, float start, float stop, float step){
|
||||
int64_t ne[] = {size};
|
||||
size_t nb[] = {sizeof(uint16_t)};
|
||||
float m, int64_t size, float start, float stop, float step, ggml_type dtype){
|
||||
aclDataType acl_type = ggml_cann_type_mapping(dtype);
|
||||
size_t type_size = ggml_type_size(dtype);
|
||||
|
||||
ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * sizeof(uint16_t));
|
||||
int64_t ne[] = {size};
|
||||
size_t nb[] = {type_size};
|
||||
|
||||
ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * type_size);
|
||||
void* arange_buffer = arange_allocator.get();
|
||||
|
||||
aclTensor* arange_tensor = ggml_cann_create_tensor(
|
||||
arange_buffer, ACL_FLOAT16, sizeof(uint16_t), ne, nb, 1);
|
||||
arange_buffer, acl_type, type_size, ne, nb, 1);
|
||||
aclnn_arange(ctx, arange_tensor, start, stop, step, size);
|
||||
|
||||
aclTensor* slope_tensor = ggml_cann_create_tensor(
|
||||
slope_buffer, ACL_FLOAT16, sizeof(uint16_t), ne, nb, 1);
|
||||
slope_buffer, acl_type, type_size, ne, nb, 1);
|
||||
|
||||
aclScalar* sc = aclCreateScalar(&m, aclDataType::ACL_FLOAT);
|
||||
|
||||
@@ -1470,10 +1474,11 @@ static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_bu
|
||||
* @param n_head Total number of attention heads.
|
||||
* @param slope_buffer Pointer to the output buffer (float array) for storing slopes.
|
||||
* @param max_bias Maximum bias value for slope computation.
|
||||
* @param dtype Data type for slope tensor.
|
||||
*
|
||||
*/
|
||||
static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head,
|
||||
void* slope_buffer, float max_bias) {
|
||||
void* slope_buffer, float max_bias, ggml_type dtype) {
|
||||
const int n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
|
||||
|
||||
float m0 = powf(2.0f, -(max_bias) / n_head_log2);
|
||||
@@ -1490,7 +1495,7 @@ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head,
|
||||
float step = 1;
|
||||
float count = n_head_log2;
|
||||
// end needs to be +1 because aclnn uses a left-closed, right-open interval.
|
||||
aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step);
|
||||
aclnn_get_slope_inner(ctx, slope_buffer, m0, count, start, end + 1, step, dtype);
|
||||
if (n_head_log2 < n_head) {
|
||||
// arange2
|
||||
start = 2 * (n_head_log2 - n_head_log2) + 1;
|
||||
@@ -1499,7 +1504,7 @@ static void aclnn_get_slope(ggml_backend_cann_context & ctx, int64_t n_head,
|
||||
count = n_head - n_head_log2;
|
||||
aclnn_get_slope_inner(
|
||||
ctx, (char *) slope_buffer + n_head_log2 * sizeof(float),
|
||||
m1, count, start, end + 1, step);
|
||||
m1, count, start, end + 1, step, dtype);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1536,7 +1541,7 @@ static void aclnn_add_alibi(ggml_backend_cann_context& ctx, ggml_tensor* mask,
|
||||
ggml_cann_pool_alloc bias_allocator(
|
||||
ctx.pool(), ggml_nelements(dst) * ggml_element_size(dst));
|
||||
bias_buffer = bias_allocator.get();
|
||||
aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias);
|
||||
aclnn_get_slope(ctx, n_heads, slope_buffer, max_bias, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
// broadcast for mask, slop and dst;
|
||||
@@ -3269,7 +3274,7 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
const int64_t n_heads = src0->ne[2];
|
||||
ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(uint16_t));
|
||||
void* slope_buffer = slope_allocator.get();
|
||||
aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias);
|
||||
aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias, GGML_TYPE_F16);
|
||||
|
||||
int64_t slope_ne[] = {1, 1, n_heads, 1};
|
||||
size_t slope_nb[GGML_MAX_DIMS];
|
||||
|
||||
Reference in New Issue
Block a user