CANN: Add cross_entropy_loss op support (#16886)

* update L2_NORM op support

* update L2_NORM op support

* remove extra whitespace

* cann: update cross_entropy_loss op support

* remove trailing whitespaces

* rebase the latest code in the main repository and remove the l2_norm operator that already exists in another pull request.

* undo the l2_norm operator deletion
This commit is contained in:
TecJesh
2025-11-13 09:39:51 +08:00
committed by GitHub
parent a90eb94ca9
commit 97d5117217
3 changed files with 128 additions and 0 deletions

View File

@@ -477,6 +477,92 @@ void ggml_cann_l2_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_cann_release_resources(ctx, dims_array, p_scalar, acl_src, acl_dst, acl_div);
}
void ggml_cann_cross_entropy_loss(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor * src0 = dst->src[0];
ggml_tensor * src1 = dst->src[1];
const int64_t nc = src0->ne[0];
const int64_t nr = ggml_nrows(src0);
int64_t logits_ne[] = {nc, nr};
size_t logits_nb[2];
logits_nb[0] = ggml_type_size(src0->type);
logits_nb[1] = logits_nb[0] * logits_ne[0];
aclTensor * acl_logits = ggml_cann_create_tensor(src0->data, ACL_FLOAT, sizeof(float), logits_ne, logits_nb, 2);
size_t log_softmax_type_size = sizeof(float);
int64_t log_softmax_n_bytes = nr * nc * log_softmax_type_size;
ggml_cann_pool_alloc log_softmax_allocator(ctx.pool(), log_softmax_n_bytes);
void * log_softmax_buffer = log_softmax_allocator.get();
int64_t log_softmax_ne[] = {nc, nr};
size_t log_softmax_nb[2];
log_softmax_nb[0] = log_softmax_type_size;
log_softmax_nb[1] = log_softmax_nb[0] * log_softmax_ne[0];
aclTensor * acl_log_softmax = ggml_cann_create_tensor(log_softmax_buffer, ACL_FLOAT, log_softmax_type_size, log_softmax_ne, log_softmax_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, LogSoftmax, acl_logits, 1, acl_log_softmax);
int64_t labels_ne[] = {nc, nr};
size_t labels_nb[2];
labels_nb[0] = ggml_type_size(src1->type);
labels_nb[1] = labels_nb[0] * labels_ne[0];
aclTensor * acl_labels = ggml_cann_create_tensor(src1->data, ACL_FLOAT, sizeof(float), labels_ne, labels_nb, 2);
size_t mul_type_size = sizeof(float);
int64_t mul_n_bytes = nr * nc * mul_type_size;
ggml_cann_pool_alloc mul_allocator(ctx.pool(), mul_n_bytes);
void * mul_buffer = mul_allocator.get();
int64_t mul_ne[] = {nc, nr};
size_t mul_nb[2];
mul_nb[0] = mul_type_size;
mul_nb[1] = mul_nb[0] * mul_ne[0];
aclTensor * acl_mul_result = ggml_cann_create_tensor(mul_buffer, ACL_FLOAT, mul_type_size, mul_ne, mul_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, Mul, acl_log_softmax, acl_labels, acl_mul_result);
size_t sum_per_sample_type_size = sizeof(float);
int64_t sum_per_sample_n_bytes = nr * sum_per_sample_type_size;
ggml_cann_pool_alloc sum_per_sample_allocator(ctx.pool(), sum_per_sample_n_bytes);
void * sum_per_sample_buffer = sum_per_sample_allocator.get();
int64_t sum_per_sample_ne[] = {nr};
size_t sum_per_sample_nb[1];
sum_per_sample_nb[0] = sum_per_sample_type_size;
aclTensor * acl_sum_per_sample = ggml_cann_create_tensor(sum_per_sample_buffer, ACL_FLOAT, sum_per_sample_type_size, sum_per_sample_ne, sum_per_sample_nb, 1);
std::vector<int64_t> sum_dims = {1};
aclIntArray * dims_array = aclCreateIntArray(sum_dims.data(), sum_dims.size());
bool keep_dims = false;
GGML_CANN_CALL_ACLNN_OP(ctx, ReduceSum, acl_mul_result, dims_array, keep_dims, ACL_FLOAT, acl_sum_per_sample);
size_t total_sum_type_size = sizeof(float);
int64_t total_sum_n_bytes = 1 * total_sum_type_size;
ggml_cann_pool_alloc total_sum_allocator(ctx.pool(), total_sum_n_bytes);
void * total_sum_buffer = total_sum_allocator.get();
int64_t total_sum_ne[] = {1};
size_t total_sum_nb[1];
total_sum_nb[0] = total_sum_type_size;
aclTensor * acl_total_sum = ggml_cann_create_tensor(total_sum_buffer, ACL_FLOAT, total_sum_type_size, total_sum_ne, total_sum_nb, 1);
std::vector<int64_t> total_sum_dims = {0};
aclIntArray * total_sum_dims_array = aclCreateIntArray(total_sum_dims.data(), total_sum_dims.size());
GGML_CANN_CALL_ACLNN_OP(ctx, ReduceSum, acl_sum_per_sample, total_sum_dims_array, keep_dims, ACL_FLOAT, acl_total_sum);
float value = -1.0f / static_cast<float>(nr);
aclScalar * scale_factor = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
aclTensor * acl_dst = ggml_cann_create_tensor(dst->data, ACL_FLOAT, sizeof(float), total_sum_ne, total_sum_nb, 1);
GGML_CANN_CALL_ACLNN_OP(ctx, Muls, acl_total_sum, scale_factor, acl_dst);
ggml_cann_release_resources(ctx, acl_logits, acl_log_softmax, acl_labels, acl_mul_result, acl_sum_per_sample, acl_total_sum, acl_dst, scale_factor, dims_array, total_sum_dims_array);
}
void ggml_cann_group_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor * src = dst->src[0];