mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	convert : write more metadata for LLaMA
This commit is contained in:
		@@ -17,6 +17,7 @@ from sentencepiece import SentencePieceProcessor
 | 
				
			|||||||
# compatible with python < 3.9
 | 
					# compatible with python < 3.9
 | 
				
			||||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | 
					NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def permute(weights: NDArray, n_head: int) -> NDArray:
 | 
					def permute(weights: NDArray, n_head: int) -> NDArray:
 | 
				
			||||||
    return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
					    return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
				
			||||||
                   .swapaxes(1, 2)
 | 
					                   .swapaxes(1, 2)
 | 
				
			||||||
@@ -52,12 +53,12 @@ if len(sys.argv) > 2:
 | 
				
			|||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
					fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print("gguf: loading model "+last_dir)
 | 
					print("gguf: loading model "+last_dir)
 | 
				
			||||||
    
 | 
					
 | 
				
			||||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | 
					with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | 
				
			||||||
    hparams = json.load(f)
 | 
					    hparams = json.load(f)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if hparams["architectures"][0] != "LlamaForCausalLM":
 | 
					if hparams["architectures"][0] != "LlamaForCausalLM":
 | 
				
			||||||
    print("Model architecture not supported: " + hparams["architectures"][0] )
 | 
					    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
				
			||||||
    sys.exit()
 | 
					    sys.exit()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
 | 
					model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
 | 
				
			||||||
@@ -68,18 +69,23 @@ gguf_writer = gguf.GGUFWriter.open(fname_out)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
print("gguf: get model metadata")
 | 
					print("gguf: get model metadata")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
llm_arch    = "llama"
 | 
					llm_arch = "llama"
 | 
				
			||||||
head_count  = hparams["num_attention_heads"]
 | 
					hf_repo = hparams["_name_or_path"]
 | 
				
			||||||
 | 
					head_count = hparams["num_attention_heads"]
 | 
				
			||||||
 | 
					head_count_kv = hparams["num_key_value_heads"]
 | 
				
			||||||
block_count = hparams["num_hidden_layers"]
 | 
					block_count = hparams["num_hidden_layers"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer.add_name(last_dir)
 | 
					gguf_writer.add_name(last_dir)
 | 
				
			||||||
gguf_writer.add_architecture(llm_arch)
 | 
					gguf_writer.add_architecture(llm_arch)
 | 
				
			||||||
 | 
					gguf_writer.add_quantization_version(ftype)
 | 
				
			||||||
 | 
					guff_writer.add_source_hf_repo(hf_repo)
 | 
				
			||||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
 | 
					gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
 | 
				
			||||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
 | 
					gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
 | 
				
			||||||
gguf_writer.add_block_count(llm_arch, block_count)
 | 
					gguf_writer.add_block_count(llm_arch, block_count)
 | 
				
			||||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
 | 
					gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
 | 
				
			||||||
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
					gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
				
			||||||
gguf_writer.add_head_count(llm_arch, head_count)
 | 
					gguf_writer.add_head_count(llm_arch, head_count)
 | 
				
			||||||
 | 
					gguf_writer.add_head_count_kv(llm_arch, head_count_kv)
 | 
				
			||||||
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
 | 
					gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -173,7 +179,7 @@ for name in list_vars.keys():
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    # permute these
 | 
					    # permute these
 | 
				
			||||||
    if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
 | 
					    if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
 | 
				
			||||||
        data = permute(data,head_count)
 | 
					        data = permute(data, head_count)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # map tensor names
 | 
					    # map tensor names
 | 
				
			||||||
    if name.endswith(".weight") and name[:-7] in tensor_map:
 | 
					    if name.endswith(".weight") and name[:-7] in tensor_map:
 | 
				
			||||||
@@ -181,11 +187,11 @@ for name in list_vars.keys():
 | 
				
			|||||||
    elif name.endswith(".bias") and name[:-5] in tensor_map:
 | 
					    elif name.endswith(".bias") and name[:-5] in tensor_map:
 | 
				
			||||||
        name = tensor_map[name[:-5]] + ".bias"
 | 
					        name = tensor_map[name[:-5]] + ".bias"
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        print( "Can not map tensor '" + name + "'" )
 | 
					        print("Can not map tensor '" + name + "'")
 | 
				
			||||||
        sys.exit()
 | 
					        sys.exit()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    n_dims = len(data.shape)
 | 
					    n_dims = len(data.shape)
 | 
				
			||||||
    data_dtype = data.dtype 
 | 
					    data_dtype = data.dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#    print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
 | 
					#    print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -223,7 +229,7 @@ for name in list_vars.keys():
 | 
				
			|||||||
        data = permute(data, head_count)
 | 
					        data = permute(data, head_count)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    n_dims = len(data.shape)
 | 
					    n_dims = len(data.shape)
 | 
				
			||||||
    data_dtype = data.dtype 
 | 
					    data_dtype = data.dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if data_dtype != np.float16 and data_dtype != np.float32:
 | 
					    if data_dtype != np.float16 and data_dtype != np.float32:
 | 
				
			||||||
        # convert any unsupported data types to float32
 | 
					        # convert any unsupported data types to float32
 | 
				
			||||||
@@ -237,5 +243,5 @@ for name in list_vars.keys():
 | 
				
			|||||||
gguf_writer.close()
 | 
					gguf_writer.close()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print("gguf: model successfully exported to '" + fname_out + "'" )
 | 
					print("gguf: model successfully exported to '" + fname_out + "'")
 | 
				
			||||||
print("")
 | 
					print("")
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										23
									
								
								gguf.py
									
									
									
									
									
								
							
							
						
						
									
										23
									
								
								gguf.py
									
									
									
									
									
								
							@@ -12,23 +12,10 @@ from typing import Any, IO, List
 | 
				
			|||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
import sys
 | 
					import sys
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class GGMLQuantizationType(IntEnum):
 | 
					class GGMLQuantizationType(IntEnum):
 | 
				
			||||||
    F32 = 0
 | 
					    F32 = 0
 | 
				
			||||||
    F16 = 1
 | 
					    F16 = 1
 | 
				
			||||||
    Q4_0 = 2
 | 
					 | 
				
			||||||
    Q4_1 = 3
 | 
					 | 
				
			||||||
    # Q4_2 = 4 # support has been removed
 | 
					 | 
				
			||||||
    # Q4_3 = 5 # support has been removed
 | 
					 | 
				
			||||||
    Q5_0 = 6
 | 
					 | 
				
			||||||
    Q5_1 = 7
 | 
					 | 
				
			||||||
    Q8_0 = 8
 | 
					 | 
				
			||||||
    Q8_1 = 9
 | 
					 | 
				
			||||||
    Q2_K = 10
 | 
					 | 
				
			||||||
    Q3_K = 11
 | 
					 | 
				
			||||||
    Q4_K = 12
 | 
					 | 
				
			||||||
    Q5_K = 13
 | 
					 | 
				
			||||||
    Q6_K = 14
 | 
					 | 
				
			||||||
    Q8_K = 15
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class GGUFValueType(IntEnum):
 | 
					class GGUFValueType(IntEnum):
 | 
				
			||||||
@@ -143,7 +130,7 @@ class GGUFWriter:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        if add_vtype:
 | 
					        if add_vtype:
 | 
				
			||||||
            self.kv_data += struct.pack("<I", vtype)
 | 
					            self.kv_data += struct.pack("<I", vtype)
 | 
				
			||||||
            self.kv_data_count += 1;
 | 
					            self.kv_data_count += 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if vtype == GGUFValueType.UINT8:
 | 
					        if vtype == GGUFValueType.UINT8:
 | 
				
			||||||
            self.kv_data += struct.pack("<B", val)
 | 
					            self.kv_data += struct.pack("<B", val)
 | 
				
			||||||
@@ -201,7 +188,7 @@ class GGUFWriter:
 | 
				
			|||||||
            self.fout.write(bytes([0] * pad))
 | 
					            self.fout.write(bytes([0] * pad))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        tensor.tofile(self.fout)
 | 
					        tensor.tofile(self.fout)
 | 
				
			||||||
        
 | 
					
 | 
				
			||||||
        pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
 | 
					        pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
 | 
				
			||||||
        if pad != 0:
 | 
					        if pad != 0:
 | 
				
			||||||
            self.fout.write(bytes([0] * pad))
 | 
					            self.fout.write(bytes([0] * pad))
 | 
				
			||||||
@@ -214,7 +201,7 @@ class GGUFWriter:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    def add_architecture(self, architecture: str):
 | 
					    def add_architecture(self, architecture: str):
 | 
				
			||||||
        self.add_string(constants.KEY_GENERAL_ARCHITECTURE,
 | 
					        self.add_string(constants.KEY_GENERAL_ARCHITECTURE,
 | 
				
			||||||
                          architecture)
 | 
					                        architecture)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def add_author(self, author: str):
 | 
					    def add_author(self, author: str):
 | 
				
			||||||
        self.add_string(constants.KEY_GENERAL_AUTHOR, author)
 | 
					        self.add_string(constants.KEY_GENERAL_AUTHOR, author)
 | 
				
			||||||
@@ -311,7 +298,7 @@ class GGUFWriter:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    def add_token_scores(self, scores: List[float]):
 | 
					    def add_token_scores(self, scores: List[float]):
 | 
				
			||||||
        self.add_array(constants.KEY_TOKENIZER_SCORES, scores)
 | 
					        self.add_array(constants.KEY_TOKENIZER_SCORES, scores)
 | 
				
			||||||
    
 | 
					
 | 
				
			||||||
    def add_bos_token_id(self, id: int):
 | 
					    def add_bos_token_id(self, id: int):
 | 
				
			||||||
        self.add_uint32(constants.KEY_TOKENIZER_BOS_ID, id)
 | 
					        self.add_uint32(constants.KEY_TOKENIZER_BOS_ID, id)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user