mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-08 10:07:01 +00:00
convert : write more metadata for LLaMA
This commit is contained in:
@@ -17,6 +17,7 @@ from sentencepiece import SentencePieceProcessor
|
||||
# compatible with python < 3.9
|
||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||
|
||||
|
||||
def permute(weights: NDArray, n_head: int) -> NDArray:
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
@@ -52,12 +53,12 @@ if len(sys.argv) > 2:
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
||||
|
||||
print("gguf: loading model "+last_dir)
|
||||
|
||||
|
||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "LlamaForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0] )
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
sys.exit()
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
||||
@@ -68,18 +69,23 @@ gguf_writer = gguf.GGUFWriter.open(fname_out)
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
llm_arch = "llama"
|
||||
head_count = hparams["num_attention_heads"]
|
||||
llm_arch = "llama"
|
||||
hf_repo = hparams["_name_or_path"]
|
||||
head_count = hparams["num_attention_heads"]
|
||||
head_count_kv = hparams["num_key_value_heads"]
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
gguf_writer.add_name(last_dir)
|
||||
gguf_writer.add_architecture(llm_arch)
|
||||
gguf_writer.add_quantization_version(ftype)
|
||||
guff_writer.add_source_hf_repo(hf_repo)
|
||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(llm_arch, block_count)
|
||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
gguf_writer.add_head_count(llm_arch, head_count)
|
||||
gguf_writer.add_head_count_kv(llm_arch, head_count_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
|
||||
|
||||
|
||||
@@ -173,7 +179,7 @@ for name in list_vars.keys():
|
||||
|
||||
# permute these
|
||||
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
||||
data = permute(data,head_count)
|
||||
data = permute(data, head_count)
|
||||
|
||||
# map tensor names
|
||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||
@@ -181,11 +187,11 @@ for name in list_vars.keys():
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print( "Can not map tensor '" + name + "'" )
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
data_dtype = data.dtype
|
||||
|
||||
# print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
|
||||
|
||||
@@ -223,7 +229,7 @@ for name in list_vars.keys():
|
||||
data = permute(data, head_count)
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
data_dtype = data.dtype
|
||||
|
||||
if data_dtype != np.float16 and data_dtype != np.float32:
|
||||
# convert any unsupported data types to float32
|
||||
@@ -237,5 +243,5 @@ for name in list_vars.keys():
|
||||
gguf_writer.close()
|
||||
|
||||
|
||||
print("gguf: model successfully exported to '" + fname_out + "'" )
|
||||
print("gguf: model successfully exported to '" + fname_out + "'")
|
||||
print("")
|
||||
|
||||
Reference in New Issue
Block a user