mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-11 10:36:54 +00:00
hparams : add n_embd_inp() to support extended embed (#16928)
* add n_embd_full to support extended embed * don't change output * rename to n_embd_inp * restore n_embd where applicable
This commit is contained in:
@@ -486,6 +486,7 @@ extern "C" {
|
||||
|
||||
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_embd_inp (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
|
||||
|
||||
@@ -827,7 +827,7 @@ int llama_context::encode(const llama_batch & batch_inp) {
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_embd = hparams.n_embd_inp();
|
||||
const int64_t n_vocab = model.vocab.n_tokens();
|
||||
|
||||
// note: during encode, we always pass the full sequence starting from pos = 0
|
||||
@@ -996,7 +996,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int64_t n_vocab = vocab.n_tokens();
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_embd = hparams.n_embd_inp();
|
||||
|
||||
// when computing embeddings, all tokens are output
|
||||
const bool output_all = cparams.embeddings;
|
||||
@@ -2154,7 +2154,7 @@ void llama_context::opt_epoch_iter(
|
||||
batch.logits [pos_batch] = true;
|
||||
}
|
||||
|
||||
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
|
||||
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd_inp(), cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -1142,7 +1142,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
|
||||
// input embeddings with optional lora
|
||||
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_embd = hparams.n_embd_inp();
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_embd>();
|
||||
|
||||
@@ -1279,7 +1279,7 @@ ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
|
||||
// return cur;
|
||||
//}
|
||||
|
||||
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
|
||||
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd_inp();
|
||||
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
|
||||
|
||||
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
|
||||
|
||||
@@ -60,6 +60,16 @@ uint32_t llama_hparams::n_gqa(uint32_t il) const {
|
||||
return n_head/n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_inp() const {
|
||||
uint32_t n_embd_inp = n_embd;
|
||||
|
||||
if (n_deepstack_layers > 0) {
|
||||
n_embd_inp += n_embd * n_deepstack_layers;
|
||||
}
|
||||
|
||||
return n_embd_inp;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
|
||||
@@ -227,6 +227,9 @@ struct llama_hparams {
|
||||
|
||||
uint32_t n_gqa(uint32_t il = 0) const;
|
||||
|
||||
// dimension of main + auxiliary input embeddings
|
||||
uint32_t n_embd_inp() const;
|
||||
|
||||
// dimension of key embeddings across all k-v heads
|
||||
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
|
||||
|
||||
|
||||
@@ -276,8 +276,8 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w
|
||||
} break;
|
||||
case GGML_OP_IM2COL:
|
||||
{
|
||||
const int n_embd = hparams.n_embd;
|
||||
ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
|
||||
const int n_embd_inp = hparams.n_embd_inp();
|
||||
ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd_inp, w->ne[1], 1, 1);
|
||||
op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
|
||||
} break;
|
||||
case GGML_OP_SCALE:
|
||||
@@ -1039,9 +1039,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
case 64: type = LLM_TYPE_32B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
// since vision model stacks deepstack features along feature dim
|
||||
// we also create a fake "n_embd" for text model to be the main embd + deepstack embds
|
||||
hparams.n_embd *= hparams.n_deepstack_layers + 1;
|
||||
} break;
|
||||
case LLM_ARCH_QWEN3MOE:
|
||||
{
|
||||
@@ -1065,9 +1062,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
case 94: type = LLM_TYPE_235B_A22B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
// since vision model stacks deepstack features along feature dim
|
||||
// we also create a fake "n_embd" for text model to be the main embd + deepstack embds
|
||||
hparams.n_embd *= hparams.n_deepstack_layers + 1;
|
||||
} break;
|
||||
case LLM_ARCH_PHI2:
|
||||
{
|
||||
@@ -3341,10 +3335,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
case LLM_ARCH_QWEN3:
|
||||
case LLM_ARCH_QWEN3VL:
|
||||
{
|
||||
// for model loading, the weights only have the main embd
|
||||
// so we need to divide by the number of deepstack layers + 1
|
||||
// n_embd is const int so we declare a new variable
|
||||
int64_t n_embd = hparams.n_embd / (hparams.n_deepstack_layers + 1);
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
// output
|
||||
@@ -3380,10 +3370,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
case LLM_ARCH_QWEN3MOE:
|
||||
case LLM_ARCH_QWEN3VLMOE:
|
||||
{
|
||||
// for model loading, the weights only have the main embd
|
||||
// so we need to divide by the number of deepstack layers + 1
|
||||
// n_embd is const int so we declare a new variable
|
||||
int64_t n_embd = hparams.n_embd / (hparams.n_deepstack_layers + 1);
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
// output
|
||||
@@ -6535,6 +6521,7 @@ void llama_model::print_info() const {
|
||||
if (!hparams.vocab_only) {
|
||||
LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
|
||||
LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
|
||||
LLAMA_LOG_INFO("%s: n_embd_inp = %u\n", __func__, hparams.n_embd_inp());
|
||||
LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||||
LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
|
||||
LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
|
||||
@@ -7380,6 +7367,10 @@ int32_t llama_model_n_embd(const llama_model * model) {
|
||||
return model->hparams.n_embd;
|
||||
}
|
||||
|
||||
int32_t llama_model_n_embd_inp(const llama_model * model) {
|
||||
return model->hparams.n_embd_inp();
|
||||
}
|
||||
|
||||
int32_t llama_model_n_layer(const llama_model * model) {
|
||||
return model->hparams.n_layer;
|
||||
}
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
#include "models.h"
|
||||
|
||||
llm_build_qwen3vlmoe::llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
const int64_t n_embd_full = hparams.n_embd; // main embd + deepstack embds
|
||||
const size_t n_deepstack_layers = hparams.n_deepstack_layers;
|
||||
const int64_t n_embd = n_embd_full / (n_deepstack_layers + 1);
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
@@ -1,13 +1,10 @@
|
||||
#include "models.h"
|
||||
|
||||
llm_build_qwen3vl::llm_build_qwen3vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
|
||||
const int64_t n_embd_full = hparams.n_embd; // main embd + deepstack embds
|
||||
const size_t n_deepstack_layers = hparams.n_deepstack_layers;
|
||||
const int64_t n_embd = n_embd_full / (n_deepstack_layers + 1);
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
|
||||
@@ -163,7 +163,7 @@ struct mtmd_context {
|
||||
print_timings(ctx_params.print_timings),
|
||||
n_threads (ctx_params.n_threads),
|
||||
media_marker (ctx_params.media_marker),
|
||||
n_embd_text (llama_model_n_embd(text_model))
|
||||
n_embd_text (llama_model_n_embd_inp(text_model))
|
||||
{
|
||||
if (std::string(ctx_params.image_marker) != MTMD_DEFAULT_IMAGE_MARKER) {
|
||||
throw std::runtime_error("custom image_marker is not supported anymore, use media_marker instead");
|
||||
|
||||
Reference in New Issue
Block a user