mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	lookahead : add comments
This commit is contained in:
		| @@ -6,7 +6,7 @@ | ||||
| #include <string> | ||||
| #include <vector> | ||||
|  | ||||
| struct seq_ngram { | ||||
| struct ngram_data { | ||||
|     bool active = false; | ||||
|  | ||||
|     llama_seq_id seq_id = -1; | ||||
| @@ -16,11 +16,12 @@ struct seq_ngram { | ||||
|     std::vector<llama_token> tokens; | ||||
| }; | ||||
|  | ||||
| // n-gram container | ||||
| struct ngram_container { | ||||
|     ngram_container(int n_vocab, int N, int G) { | ||||
|         cnt.resize(n_vocab); | ||||
|         head.resize(n_vocab); | ||||
|         tokens.resize(n_vocab * (N - 1)*G); | ||||
|         tokens.resize(n_vocab * G * (N - 1)); | ||||
|     } | ||||
|  | ||||
|     int n_total = 0; | ||||
| @@ -28,6 +29,8 @@ struct ngram_container { | ||||
|     std::vector<int> cnt; | ||||
|     std::vector<int> head; | ||||
|  | ||||
|     // [n_vocab][G][N - 1] | ||||
|     // for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1 | ||||
|     std::vector<llama_token> tokens; | ||||
| }; | ||||
|  | ||||
| @@ -109,6 +112,7 @@ int main(int argc, char ** argv) { | ||||
|     // used to determine end of generation | ||||
|     bool has_eos = false; | ||||
|  | ||||
|     // for each decoded batch, we have at most W + G + 1 distinct sequences: | ||||
|     // seq_id == 0           : the current input token | ||||
|     // seq_id [1, W]         : tokens from the past N - 1 Jacobi iterations | ||||
|     // seq_id [W + 1, W + G] : verification n-grams | ||||
| @@ -118,7 +122,7 @@ int main(int argc, char ** argv) { | ||||
|     struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams); | ||||
|  | ||||
|     // verification n-grams | ||||
|     std::vector<seq_ngram> ngrams_cur(G); | ||||
|     std::vector<ngram_data> ngrams_cur(G); | ||||
|  | ||||
|     // tokens for the past N - 1 Jacobi iterations | ||||
|     std::vector<llama_token> tokens_j_prev(W); | ||||
| @@ -127,21 +131,26 @@ int main(int argc, char ** argv) { | ||||
|         tokens_j[j].resize(W); | ||||
|  | ||||
|         for (int i = 0; i < W; i++) { | ||||
|             // initialize randomly from the prompt tokens | ||||
|             tokens_j[j][i] = all[1 + rand() % (all.size() - 1)]; | ||||
|  | ||||
|             // initialize with a sequence of increasing numbers | ||||
|             tokens_j[j][i] = 100 + i; | ||||
|             // there are different ways to init these tokens | ||||
|             if (0) { | ||||
|                 // initialize randomly from the prompt tokens | ||||
|                 tokens_j[j][i] = all[1 + rand() % (all.size() - 1)]; | ||||
|             } else { | ||||
|                 // initialize with a sequence of increasing numbers | ||||
|                 tokens_j[j][i] = 100 + i; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     std::vector<llama_seq_id> seq_id_look; | ||||
|  | ||||
|     // the input token belongs both to all sequences | ||||
|     std::vector<llama_seq_id> seq_id_all(W + G + 1); | ||||
|     for (int i = 0; i < W + G + 1; i++) { | ||||
|         seq_id_all[i] = i; | ||||
|     } | ||||
|  | ||||
|     // here we keep adding new n-grams as we go | ||||
|     ngram_container ngrams_observed(llama_n_vocab(model), N, G); | ||||
|  | ||||
|     // debug | ||||
| @@ -171,13 +180,37 @@ int main(int argc, char ** argv) { | ||||
|         } | ||||
|  | ||||
|         // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/ | ||||
|         // | ||||
|         // Example for W = 5, N = 4, G = 2: | ||||
|         // (I = input, L = lookahead, V = verification) | ||||
|         // | ||||
|         // Batch:  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 | ||||
|         // T:        -2 -2 -2 -2 -1 -1 -1 -1 -1  0  0  0  0  0  0 | ||||
|         // Info:   I  L  L  L  L  L  L  L  L  L  L  L  L  L  L  V  V  V  V  V  V | ||||
|         // Pos:    0  1  2  3  4  1  2  3  4  5  2  3  4  5  6  1  2  3  1  2  3   (+ n_past) | ||||
|         // Logits: 1  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1 | ||||
|         // --------------------------------------------------------------------- | ||||
|         // Seq:    0 | ||||
|         //         1              1              1 | ||||
|         //         2  2              2              2 | ||||
|         //         3  3  3              3              3 | ||||
|         //         4  4  4  4              4              4 | ||||
|         //         5  5  5  5  5              5              5 | ||||
|         //         6                                            6  6  6 | ||||
|         //         7                                                     7  7  7 | ||||
|         // --------------------------------------------------------------------- | ||||
|         //                                       |  |  |  |  |  |  |  |  |  |  | | ||||
|         //                                       V  V  V  V  V  |  |  |  |  |  | | ||||
|         //                                         j_tokens     |  |  |  |  |  | | ||||
|         //                                                      V  V  V  V  V  V | ||||
|         //                                                             id | ||||
|         { | ||||
|             llama_batch_clear(batch); | ||||
|  | ||||
|             // current token - first token of the first level | ||||
|             llama_batch_add(batch, id, n_past, seq_id_all, true); | ||||
|  | ||||
|             // verification n-grams - queue this here for less KV cache fragmentation | ||||
|             // verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation | ||||
|             { | ||||
|                 const int g_cur = ngrams_observed.cnt[id]; | ||||
|  | ||||
| @@ -233,6 +266,7 @@ int main(int argc, char ** argv) { | ||||
|         for (int v = 0; v < N; ++v) { | ||||
|             int i_batch = 0; | ||||
|  | ||||
|             // if no active ngrams are left, it means the sampled token does not pass the verification | ||||
|             if (v > 0) { | ||||
|                 for (int g = 0; g < (int) ngrams_cur.size(); g++) { | ||||
|                     if (ngrams_cur[g].active) { | ||||
| @@ -244,16 +278,18 @@ int main(int argc, char ** argv) { | ||||
|                     } | ||||
|                 } | ||||
|  | ||||
|                 // no more matches | ||||
|                 // no more matches -> create a new batch | ||||
|                 if (i_batch == 0) { | ||||
|                     break; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             // sample the next token | ||||
|             id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch); | ||||
|  | ||||
|             llama_sampling_accept(ctx_sampling, ctx, id, true); | ||||
|  | ||||
|             // print | ||||
|             { | ||||
|                 const std::string token_str = llama_token_to_piece(ctx, id); | ||||
|  | ||||
| @@ -313,7 +349,7 @@ int main(int argc, char ** argv) { | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             // update Jacobi tokens (or whatever these are called) | ||||
|             // update lookahead tokens | ||||
|             { | ||||
|                 for (int i = 0; i < W; i++) { | ||||
|                     tokens_j_prev[i] = tokens_j[0][i]; | ||||
| @@ -330,11 +366,14 @@ int main(int argc, char ** argv) { | ||||
|                     } | ||||
|                 } else { | ||||
|                     for (int i = 0; i < W; i++) { | ||||
|                         // random init | ||||
|                         //tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)]; | ||||
|  | ||||
|                         // init from the previous level | ||||
|                         tokens_j[N - 2][i] = tokens_j[0][i]; | ||||
|                         // there are different ways to init these tokens | ||||
|                         if (0) { | ||||
|                             // random init | ||||
|                             tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)]; | ||||
|                         } else { | ||||
|                             // init from the previous level | ||||
|                             tokens_j[N - 2][i] = tokens_j[0][i]; | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
| @@ -398,9 +437,13 @@ int main(int argc, char ** argv) { | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         // KV cache management | ||||
|         // if no verification token matched, we simply remove all cells from this batch -> no fragmentation | ||||
|         llama_kv_cache_seq_rm(ctx, -1, n_past, -1); | ||||
|  | ||||
|         if (seq_id_best != 0) { | ||||
|             // if a verification token matched, we keep the best sequence and remove the rest | ||||
|             // this leads to some KV cache fragmentation | ||||
|             llama_kv_cache_seq_keep(ctx, seq_id_best); | ||||
|             llama_kv_cache_seq_cp  (ctx, seq_id_best, 0, -1, -1); | ||||
|             llama_kv_cache_seq_rm  (ctx, seq_id_best,    -1, -1); | ||||
| @@ -418,6 +461,10 @@ int main(int argc, char ** argv) { | ||||
|     LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); | ||||
|     LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f)); | ||||
|  | ||||
|     LOG_TEE("\n"); | ||||
|     LOG_TEE("W = %2d\n", W); | ||||
|     LOG_TEE("N = %2d\n", N); | ||||
|     LOG_TEE("G = %2d\n", G); | ||||
|     LOG_TEE("\n"); | ||||
|     LOG_TEE("n_predict = %d\n", n_predict); | ||||
|     LOG_TEE("n_accept  = %d\n", n_accept); | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov