ggml webgpu: support for rope,div,sub,glu,scale,cont operators (#16187)

* Work on rope

* Simplify inplace operation generation and combine mul/add generation

* Work on rope variants

* implement neox rope

* rope complete

* Add sub,div,glu operators

* implement scale op

* Update cpy shader to handle cont/more types

* formatting

* Update test vars printing for rope,rms_norm

* Avoid ROPE hardcoded constants

* Add TODO to change ROPE constants to enum

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix TODO comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Reese Levine
2025-09-30 09:57:51 -07:00
committed by GitHub
parent d1c84a662d
commit 8d78cd2613
17 changed files with 1534 additions and 397 deletions

View File

@@ -130,13 +130,15 @@ struct webgpu_context_struct {
wgpu::ComputePipeline set_rows_pipeline;
wgpu::ComputePipeline get_rows_pipeline[30];
wgpu::ComputePipeline get_rows_f32_no_vec_pipeline;
wgpu::ComputePipeline cpy_pipeline;
wgpu::ComputePipeline add_pipeline[2];
wgpu::ComputePipeline add_ip_pipeline[2];
wgpu::ComputePipeline mul_pipeline[2];
wgpu::ComputePipeline mul_ip_pipeline[2];
wgpu::ComputePipeline rms_norm_pipeline;
wgpu::ComputePipeline rms_norm_ip_pipeline;
wgpu::ComputePipeline cpy_pipeline[2][2]; // src type, dst type
wgpu::ComputePipeline add_pipeline[2][2]; // type, inplace
wgpu::ComputePipeline sub_pipeline[2][2]; // type, inplace
wgpu::ComputePipeline mul_pipeline[2][2]; // type, inplace
wgpu::ComputePipeline div_pipeline[2][2]; // type, inplace
wgpu::ComputePipeline rms_norm_pipeline[2]; // inplace
wgpu::ComputePipeline rope_pipeline[2][2][2]; // type, ff, inplace
wgpu::ComputePipeline glu_pipeline[7][2][2]; // glu-op, type, split
wgpu::ComputePipeline scale_pipeline[2]; // inplace
size_t memset_bytes_per_thread;
@@ -489,8 +491,9 @@ static void ggml_webgpu_cpy(webgpu_context & ctx, ggml_tensor * src, ggml_tensor
(uint32_t) (src->nb[2] / ggml_type_size(src->type)), (uint32_t) (src->nb[3] / ggml_type_size(src->type)),
(uint32_t) (dst->nb[0] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
(uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
// Logical shape — same for both tensors even if permuted
(uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], (uint32_t) src->ne[3]
// Logical shapes
(uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], (uint32_t) dst->ne[0],
(uint32_t) dst->ne[1], (uint32_t) dst->ne[2]
};
std::vector<wgpu::BindGroupEntry> entries = {
@@ -506,7 +509,8 @@ static void ggml_webgpu_cpy(webgpu_context & ctx, ggml_tensor * src, ggml_tensor
size_t max_wg_size = ctx->max_wg_size_x;
uint32_t wg_x = (ne + max_wg_size - 1) / max_wg_size;
ggml_backend_webgpu_build_and_enqueue(ctx, ctx->cpy_pipeline, params, entries, wg_x, ggml_op_name(dst->op));
ggml_backend_webgpu_build_and_enqueue(ctx, ctx->cpy_pipeline[src->type][dst->type], params, entries, wg_x,
ggml_op_name(dst->op));
}
static void ggml_webgpu_set_rows(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * idx, ggml_tensor * dst) {
@@ -649,7 +653,7 @@ static void ggml_webgpu_binary_op(webgpu_context & ctx,
ggml_tensor * src1,
ggml_tensor * dst,
wgpu::ComputePipeline & pipeline,
bool in_place) {
bool inplace) {
std::vector<uint32_t> params = {
(uint32_t) ggml_nelements(dst),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)),
@@ -678,7 +682,7 @@ static void ggml_webgpu_binary_op(webgpu_context & ctx,
.offset = ggml_webgpu_tensor_align_offset(ctx, src1),
.size = ggml_webgpu_tensor_binding_size(ctx, src1) }
};
if (!in_place) {
if (!inplace) {
entries.push_back({ .binding = 2,
.buffer = ggml_webgpu_tensor_buf(dst),
.offset = ggml_webgpu_tensor_align_offset(ctx, dst),
@@ -691,30 +695,23 @@ static void ggml_webgpu_binary_op(webgpu_context & ctx,
}
static void ggml_webgpu_rms_norm(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
bool in_place = ggml_webgpu_tensor_equal(src, dst);
uint32_t eps;
memcpy(&eps, dst->op_params, sizeof(float));
int inplace = ggml_webgpu_tensor_equal(src, dst);
std::vector<uint32_t> params = {
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
(uint32_t) (src->nb[1] / ggml_type_size(src->type)),
(uint32_t) (src->nb[2] / ggml_type_size(src->type)),
(uint32_t) (src->nb[3] / ggml_type_size(src->type)),
(uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
(uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
(uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
(uint32_t) src->ne[0],
(uint32_t) src->ne[1],
(uint32_t) src->ne[2],
(uint32_t) src->ne[3],
*(uint32_t *) dst->op_params // epsilon, treated as f32 in the shader
};
if (!in_place) {
params.push_back((uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)));
}
params.push_back((uint32_t) (src->nb[1] / ggml_type_size(src->type)));
params.push_back((uint32_t) (src->nb[2] / ggml_type_size(src->type)));
params.push_back((uint32_t) (src->nb[3] / ggml_type_size(src->type)));
if (!in_place) {
params.push_back((uint32_t) (dst->nb[1] / ggml_type_size(dst->type)));
params.push_back((uint32_t) (dst->nb[2] / ggml_type_size(dst->type)));
params.push_back((uint32_t) (dst->nb[3] / ggml_type_size(dst->type)));
}
params.push_back((uint32_t) src->ne[0]);
params.push_back((uint32_t) src->ne[1]);
params.push_back((uint32_t) src->ne[2]);
params.push_back((uint32_t) src->ne[3]);
params.push_back(eps); // epsilon, will be bitcast to float in shader
std::vector<wgpu::BindGroupEntry> entries = {
{ .binding = 0,
@@ -722,24 +719,199 @@ static void ggml_webgpu_rms_norm(webgpu_context & ctx, ggml_tensor * src, ggml_t
.offset = ggml_webgpu_tensor_align_offset(ctx, src),
.size = ggml_webgpu_tensor_binding_size(ctx, src) }
};
if (!in_place) {
if (!inplace) {
entries.push_back({ .binding = 1,
.buffer = ggml_webgpu_tensor_buf(dst),
.offset = ggml_webgpu_tensor_align_offset(ctx, dst),
.size = ggml_webgpu_tensor_binding_size(ctx, dst) });
}
wgpu::ComputePipeline pipeline;
if (in_place) {
pipeline = ctx->rms_norm_ip_pipeline;
} else {
pipeline = ctx->rms_norm_pipeline;
}
size_t max_wg_size = ctx->max_wg_size_x;
uint32_t wg_x = (src->ne[1] * src->ne[2] * src->ne[3] + max_wg_size - 1) / max_wg_size;
ggml_backend_webgpu_build_and_enqueue(ctx, ctx->rms_norm_pipeline[inplace], params, entries, wg_x,
ggml_op_name(dst->op));
}
static void ggml_webgpu_rope(webgpu_context & ctx,
ggml_tensor * src0,
ggml_tensor * src1,
ggml_tensor * src2,
ggml_tensor * dst) {
const int inplace = ggml_webgpu_tensor_equal(src0, dst);
const int has_freq_factor = (src2 != nullptr);
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
int sections[4];
memcpy(sections, (int32_t *) dst->op_params + 11, 4 * sizeof(int));
float theta_scale = powf(freq_base, -2.0f / n_dims);
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
std::vector<uint32_t> params = {
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)),
src2 != nullptr ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src2) / ggml_type_size(src2->type)) : 0,
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
(uint32_t) (src0->nb[1] / ggml_type_size(src0->type)),
(uint32_t) (src0->nb[2] / ggml_type_size(src0->type)),
(uint32_t) (src0->nb[3] / ggml_type_size(src0->type)),
(uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
(uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
(uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
(uint32_t) ggml_nelements(src0) / 2,
(uint32_t) src0->ne[0],
(uint32_t) src0->ne[1],
(uint32_t) src0->ne[2],
(uint32_t) n_dims,
(uint32_t) mode,
*(uint32_t *) &theta_scale,
*(uint32_t *) &attn_factor,
*(uint32_t *) &freq_scale,
*(uint32_t *) &ext_factor,
*(uint32_t *) &corr_dims[0],
*(uint32_t *) &corr_dims[1],
(uint32_t) sections[0],
(uint32_t) sections[1],
(uint32_t) sections[2],
(uint32_t) sections[3]
};
std::vector<wgpu::BindGroupEntry> entries = {
{ .binding = 0,
.buffer = ggml_webgpu_tensor_buf(src0),
.offset = ggml_webgpu_tensor_align_offset(ctx, src0),
.size = ggml_webgpu_tensor_binding_size(ctx, src0) },
{ .binding = 1,
.buffer = ggml_webgpu_tensor_buf(src1),
.offset = ggml_webgpu_tensor_align_offset(ctx, src1),
.size = ggml_webgpu_tensor_binding_size(ctx, src1) }
};
uint32_t dst_binding = 2;
if (has_freq_factor) {
dst_binding = 3;
entries.push_back({ .binding = 2,
.buffer = ggml_webgpu_tensor_buf(src2),
.offset = ggml_webgpu_tensor_align_offset(ctx, src2),
.size = ggml_webgpu_tensor_binding_size(ctx, src2) });
}
if (!inplace) {
entries.push_back({ .binding = dst_binding,
.buffer = ggml_webgpu_tensor_buf(dst),
.offset = ggml_webgpu_tensor_align_offset(ctx, dst),
.size = ggml_webgpu_tensor_binding_size(ctx, dst) });
}
wgpu::ComputePipeline pipeline = ctx->rope_pipeline[dst->type][has_freq_factor][inplace];
size_t max_wg_size = ctx->max_wg_size_x;
uint32_t wg_x = (ggml_nelements(src0) / 2 + max_wg_size - 1) / max_wg_size;
ggml_backend_webgpu_build_and_enqueue(ctx, pipeline, params, entries, wg_x, ggml_op_name(dst->op));
}
static void ggml_webgpu_glu(webgpu_context & ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst) {
const int split = (src1 != nullptr);
std::vector<uint32_t> params = {
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)),
src1 != nullptr ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)) : 0,
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
(uint32_t) (src0->nb[1] / ggml_type_size(src0->type)),
(uint32_t) (src0->nb[2] / ggml_type_size(src0->type)),
(uint32_t) (src0->nb[3] / ggml_type_size(src0->type)),
src1 != nullptr ? (uint32_t) (src1->nb[1] / ggml_type_size(src1->type)) :
(uint32_t) (src0->nb[1] / ggml_type_size(src0->type)),
src1 != nullptr ? (uint32_t) (src1->nb[2] / ggml_type_size(src1->type)) :
(uint32_t) (src0->nb[2] / ggml_type_size(src0->type)),
src1 != nullptr ? (uint32_t) (src1->nb[3] / ggml_type_size(src1->type)) :
(uint32_t) (src0->nb[3] / ggml_type_size(src0->type)),
(uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
(uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
(uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
(uint32_t) ggml_nelements(dst),
(uint32_t) dst->ne[0],
(uint32_t) dst->ne[1],
(uint32_t) dst->ne[2],
(uint32_t) ((int32_t *) dst->op_params)[1], // swapped
*(uint32_t *) &dst->op_params[2], // alpha, for swiglu_oai
*(uint32_t *) &dst->op_params[3], // limit, for swiglu_oai
};
std::vector<wgpu::BindGroupEntry> entries = {
{ .binding = 0,
.buffer = ggml_webgpu_tensor_buf(src0),
.offset = ggml_webgpu_tensor_align_offset(ctx, src0),
.size = ggml_webgpu_tensor_binding_size(ctx, src0) },
};
uint32_t dst_binding = 1;
if (split) {
dst_binding = 2;
entries.push_back({ .binding = 1,
.buffer = ggml_webgpu_tensor_buf(src1),
.offset = ggml_webgpu_tensor_align_offset(ctx, src1),
.size = ggml_webgpu_tensor_binding_size(ctx, src1) });
}
entries.push_back({ .binding = dst_binding,
.buffer = ggml_webgpu_tensor_buf(dst),
.offset = ggml_webgpu_tensor_align_offset(ctx, dst),
.size = ggml_webgpu_tensor_binding_size(ctx, dst) });
wgpu::ComputePipeline pipeline = ctx->glu_pipeline[ggml_get_glu_op(dst)][dst->type][split];
size_t max_wg_size = ctx->max_wg_size_x;
uint32_t wg_x = (ggml_nelements(dst) + max_wg_size - 1) / max_wg_size;
ggml_backend_webgpu_build_and_enqueue(ctx, pipeline, params, entries, wg_x, ggml_op_name(dst->op));
}
static void ggml_webgpu_scale(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
int inplace = ggml_webgpu_tensor_equal(src, dst);
std::vector<uint32_t> params = {
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
(uint32_t) (src->nb[1] / ggml_type_size(src->type)),
(uint32_t) (src->nb[2] / ggml_type_size(src->type)),
(uint32_t) (src->nb[3] / ggml_type_size(src->type)),
(uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
(uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
(uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
(uint32_t) ggml_nelements(dst),
(uint32_t) src->ne[0],
(uint32_t) src->ne[1],
(uint32_t) src->ne[2],
*(uint32_t *) dst->op_params, // scale
*(uint32_t *) &dst->op_params[1] // bias
};
std::vector<wgpu::BindGroupEntry> entries = {
{ .binding = 0,
.buffer = ggml_webgpu_tensor_buf(src),
.offset = ggml_webgpu_tensor_align_offset(ctx, src),
.size = ggml_webgpu_tensor_binding_size(ctx, src) }
};
if (!inplace) {
entries.push_back({ .binding = 1,
.buffer = ggml_webgpu_tensor_buf(dst),
.offset = ggml_webgpu_tensor_align_offset(ctx, dst),
.size = ggml_webgpu_tensor_binding_size(ctx, dst) });
}
size_t max_wg_size = ctx->max_wg_size_x;
uint32_t wg_x = (ggml_nelements(dst) + max_wg_size - 1) / max_wg_size;
ggml_backend_webgpu_build_and_enqueue(ctx, ctx->scale_pipeline[inplace], params, entries, wg_x,
ggml_op_name(dst->op));
}
// Returns true if node has enqueued work into the queue, false otherwise
static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node) {
if (ggml_is_empty(node)) {
@@ -749,6 +921,7 @@ static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node) {
ggml_tensor * src0 = node->src[0];
ggml_tensor * src1 = node->src[1];
ggml_tensor * src2 = node->src[2];
switch (node->op) {
// no-ops
@@ -759,6 +932,7 @@ static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node) {
case GGML_OP_RESHAPE:
return false;
case GGML_OP_CPY:
case GGML_OP_CONT:
ggml_webgpu_cpy(ctx, src0, node);
break;
case GGML_OP_SET_ROWS:
@@ -771,22 +945,41 @@ static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node) {
ggml_webgpu_mul_mat(ctx, src0, src1, node);
break;
case GGML_OP_ADD:
if (ggml_webgpu_tensor_equal(src0, node)) {
ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->add_ip_pipeline[node->type], true);
} else {
ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->add_pipeline[node->type], false);
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->add_pipeline[node->type][inplace], inplace);
break;
}
case GGML_OP_SUB:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->sub_pipeline[node->type][inplace], inplace);
break;
}
break;
case GGML_OP_MUL:
if (ggml_webgpu_tensor_equal(src0, node)) {
ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->mul_ip_pipeline[node->type], true);
} else {
ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->mul_pipeline[node->type], false);
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->mul_pipeline[node->type][inplace], inplace);
break;
}
case GGML_OP_DIV:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->div_pipeline[node->type][inplace], inplace);
break;
}
break;
case GGML_OP_RMS_NORM:
ggml_webgpu_rms_norm(ctx, src0, node);
break;
case GGML_OP_ROPE:
ggml_webgpu_rope(ctx, src0, src1, src2, node);
break;
case GGML_OP_GLU:
ggml_webgpu_glu(ctx, src0, src1, node);
break;
case GGML_OP_SCALE:
ggml_webgpu_scale(ctx, src0, node);
break;
default:
return false;
}
@@ -1170,40 +1363,153 @@ static void ggml_webgpu_init_get_rows_pipeline(webgpu_context & webgpu_ctx) {
}
static void ggml_webgpu_init_cpy_pipeline(webgpu_context & webgpu_ctx) {
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline, wgsl_cpy, "cpy",
ggml_webgpu_max_wg_size_entry(webgpu_ctx));
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_max_wg_size_entry(webgpu_ctx);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline[GGML_TYPE_F32][GGML_TYPE_F32],
wgsl_cpy_f32_f32, "cpy_f32_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline[GGML_TYPE_F32][GGML_TYPE_F16],
wgsl_cpy_f32_f16, "cpy_f32_f16", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline[GGML_TYPE_F16][GGML_TYPE_F32],
wgsl_cpy_f16_f32, "cpy_f16_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline[GGML_TYPE_F16][GGML_TYPE_F16],
wgsl_cpy_f16_f16, "cpy_f16_f16", constants);
}
static void ggml_webgpu_init_add_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_max_wg_size_entry(webgpu_ctx);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_pipeline[GGML_TYPE_F32], wgsl_add_f32, "add_f32",
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_pipeline[GGML_TYPE_F32][0], wgsl_add_f32, "add_f32",
constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_pipeline[GGML_TYPE_F16], wgsl_add_f16, "add_f16",
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_pipeline[GGML_TYPE_F16][0], wgsl_add_f16, "add_f16",
constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_ip_pipeline[GGML_TYPE_F32], wgsl_add_in_place_f32,
"add_in_place_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_ip_pipeline[GGML_TYPE_F16], wgsl_add_in_place_f16,
"add_in_place_f16", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_pipeline[GGML_TYPE_F32][1], wgsl_add_f32_inplace,
"add_f32_inplace", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->add_pipeline[GGML_TYPE_F16][1], wgsl_add_f16_inplace,
"add_f16_inplace", constants);
}
static void ggml_webgpu_init_sub_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_max_wg_size_entry(webgpu_ctx);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->sub_pipeline[GGML_TYPE_F32][0], wgsl_sub_f32, "sub_f32",
constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->sub_pipeline[GGML_TYPE_F16][0], wgsl_sub_f16, "sub_f16",
constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->sub_pipeline[GGML_TYPE_F32][1], wgsl_sub_f32_inplace,
"sub_f32_inplace", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->sub_pipeline[GGML_TYPE_F16][1], wgsl_sub_f16_inplace,
"sub_f16_inplace", constants);
}
static void ggml_webgpu_init_mul_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_max_wg_size_entry(webgpu_ctx);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_pipeline[GGML_TYPE_F32], wgsl_mul_f32, "mul_f32",
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_pipeline[GGML_TYPE_F32][0], wgsl_mul_f32, "mul_f32",
constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_pipeline[GGML_TYPE_F16], wgsl_mul_f16, "mul_f16",
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_pipeline[GGML_TYPE_F16][0], wgsl_mul_f16, "mul_f16",
constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_ip_pipeline[GGML_TYPE_F32], wgsl_mul_in_place_f32,
"mul_in_place_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_ip_pipeline[GGML_TYPE_F16], wgsl_mul_in_place_f16,
"mul_in_place_f16", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_pipeline[GGML_TYPE_F32][1], wgsl_mul_f32_inplace,
"mul_f32_inplace", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_pipeline[GGML_TYPE_F16][1], wgsl_mul_f16_inplace,
"mul_f16_inplace", constants);
}
static void ggml_webgpu_init_div_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_max_wg_size_entry(webgpu_ctx);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->div_pipeline[GGML_TYPE_F32][0], wgsl_div_f32, "div_f32",
constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->div_pipeline[GGML_TYPE_F16][0], wgsl_div_f16, "div_f16",
constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->div_pipeline[GGML_TYPE_F32][1], wgsl_div_f32_inplace,
"div_f32_inplace", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->div_pipeline[GGML_TYPE_F16][1], wgsl_div_f16_inplace,
"div_f16_inplace", constants);
}
static void ggml_webgpu_init_rms_norm_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_max_wg_size_entry(webgpu_ctx);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rms_norm_pipeline, wgsl_rms_norm, "rms_norm",
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rms_norm_pipeline[0], wgsl_rms_norm, "rms_norm",
constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rms_norm_ip_pipeline, wgsl_rms_norm_in_place,
"rms_norm_in_place", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rms_norm_pipeline[1], wgsl_rms_norm_inplace,
"rms_norm_inplace", constants);
}
static void ggml_webgpu_init_rope_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_max_wg_size_entry(webgpu_ctx);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F32][0][0], wgsl_rope_f32,
"rope_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F32][0][1],
wgsl_rope_f32_inplace, "rope_f32_inplace", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F32][1][0], wgsl_rope_f32_ff,
"rope_f32_ff", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F32][1][1],
wgsl_rope_f32_ff_inplace, "rope_f32_ff_inplace", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F16][0][0], wgsl_rope_f16,
"rope_f16", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F16][0][1],
wgsl_rope_f16_inplace, "rope_f16_inplace", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F16][1][0], wgsl_rope_f16_ff,
"rope_f16_ff", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->rope_pipeline[GGML_TYPE_F16][1][1],
wgsl_rope_f16_ff_inplace, "rope_f16_ff_inplace", constants);
}
static void ggml_webgpu_init_glu_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_max_wg_size_entry(webgpu_ctx);
// reglu
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_REGLU][GGML_TYPE_F32][0],
wgsl_reglu_f32, "reglu_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_REGLU][GGML_TYPE_F16][0],
wgsl_reglu_f16, "reglu_f16", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_REGLU][GGML_TYPE_F32][1],
wgsl_reglu_f32_split, "reglu_f32_split", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_REGLU][GGML_TYPE_F16][1],
wgsl_reglu_f16_split, "reglu_f16_split", constants);
// geglu
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU][GGML_TYPE_F32][0],
wgsl_geglu_f32, "geglu_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU][GGML_TYPE_F16][0],
wgsl_geglu_f16, "geglu_f16", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU][GGML_TYPE_F32][1],
wgsl_geglu_f32_split, "geglu_f32_split", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU][GGML_TYPE_F16][1],
wgsl_geglu_f16_split, "geglu_f16_split", constants);
// swiglu
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU][GGML_TYPE_F32][0],
wgsl_swiglu_f32, "swiglu_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU][GGML_TYPE_F16][0],
wgsl_swiglu_f16, "swiglu_f16", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU][GGML_TYPE_F32][1],
wgsl_swiglu_f32_split, "swiglu_f32_split", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU][GGML_TYPE_F16][1],
wgsl_swiglu_f16_split, "swiglu_f16_split", constants);
// swiglu_oai
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU_OAI][GGML_TYPE_F32][0],
wgsl_swiglu_oai_f32, "swiglu_oai_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_SWIGLU_OAI][GGML_TYPE_F32][1],
wgsl_swiglu_oai_f32_split, "swiglu_oai_f32_split", constants);
// geglu_erf
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F32][0],
wgsl_geglu_erf_f32, "geglu_erf_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F16][0],
wgsl_geglu_erf_f16, "geglu_erf_f16", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F32][1],
wgsl_geglu_erf_f32_split, "geglu_erf_f32_split", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F16][1],
wgsl_geglu_erf_f16_split, "geglu_erf_f16_split", constants);
// geglu_quick
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F32][0],
wgsl_geglu_quick_f32, "geglu_quick_f32", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F16][0],
wgsl_geglu_quick_f16, "geglu_quick_f16", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F32][1],
wgsl_geglu_quick_f32_split, "geglu_quick_f32_split", constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->glu_pipeline[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F16][1],
wgsl_geglu_quick_f16_split, "geglu_quick_f16_split", constants);
}
static void ggml_webgpu_init_scale_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_max_wg_size_entry(webgpu_ctx);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->scale_pipeline[0], wgsl_scale_f32, "scale_f32",
constants);
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->scale_pipeline[1], wgsl_scale_f32_inplace,
"scale_f32_inplace", constants);
}
static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) {
@@ -1287,6 +1593,7 @@ static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const
ggml_tensor * src0 = op->src[0];
ggml_tensor * src1 = op->src[1];
// on smaller devices (or CI), tensors may be larger than the max storage buffer size
if (ggml_nbytes(op) > webgpu_ctx->limits.maxStorageBufferBindingSize ||
(src0 != nullptr && ggml_nbytes(src0) > webgpu_ctx->limits.maxStorageBufferBindingSize) ||
@@ -1304,28 +1611,34 @@ static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const
supports_op = true;
break;
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_MUL:
supports_op = (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) && (op->src[0]->type == op->type) &&
(op->src[1]->type == op->type);
case GGML_OP_DIV:
supports_op = (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) && (src0->type == op->type) &&
(src1->type == op->type);
break;
case GGML_OP_CPY:
case GGML_OP_CONT:
supports_op = (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) &&
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
break;
case GGML_OP_SET_ROWS:
supports_op = (op->type == GGML_TYPE_F16 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_I64);
break;
case GGML_OP_GET_ROWS:
if (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16 ||
op->src[0]->type == GGML_TYPE_I32 || ggml_webgpu_supported_qtype(op->src[0]->type)) {
if (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_I32 ||
ggml_webgpu_supported_qtype(src0->type)) {
supports_op = (op->type == GGML_TYPE_F32);
}
break;
case GGML_OP_MUL_MAT:
{
switch (op->src[1]->type) {
switch (src1->type) {
case GGML_TYPE_F16:
supports_op = (op->src[0]->type == GGML_TYPE_F16);
supports_op |= (src0->type == GGML_TYPE_F16);
break;
case GGML_TYPE_F32:
switch (op->src[0]->type) {
switch (src0->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
@@ -1358,7 +1671,29 @@ static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const
break;
}
case GGML_OP_RMS_NORM:
supports_op = op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32;
supports_op = op->type == GGML_TYPE_F32 && src0->type == GGML_TYPE_F32;
break;
case GGML_OP_ROPE:
supports_op = op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16;
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(op)) {
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
supports_op = op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16;
break;
case GGML_GLU_OP_SWIGLU_OAI:
supports_op = op->type == GGML_TYPE_F32;
break;
default:
break;
}
break;
case GGML_OP_SCALE:
supports_op = op->type == GGML_TYPE_F32;
break;
default:
break;
@@ -1484,8 +1819,13 @@ static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t
ggml_webgpu_init_get_rows_pipeline(ctx);
ggml_webgpu_init_cpy_pipeline(ctx);
ggml_webgpu_init_add_pipeline(ctx);
ggml_webgpu_init_sub_pipeline(ctx);
ggml_webgpu_init_mul_pipeline(ctx);
ggml_webgpu_init_div_pipeline(ctx);
ggml_webgpu_init_rms_norm_pipeline(ctx);
ggml_webgpu_init_rope_pipeline(ctx);
ggml_webgpu_init_glu_pipeline(ctx);
ggml_webgpu_init_scale_pipeline(ctx);
#ifdef GGML_WEBGPU_DEBUG
// Initialize debug buffers