llama : improve token type support (#2668)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment
This commit is contained in:
goerch
2023-08-21 17:56:02 +02:00
committed by GitHub
parent e06cbcee73
commit 8d177eddeb
4 changed files with 94 additions and 98 deletions

View File

@@ -261,12 +261,12 @@ class BpeVocab:
for i, item in enumerate(tokenizer):
text: bytes = item.encode("utf-8")
score: float = -i
yield text, score
yield text, score, 4
def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score
yield text.encode("utf-8"), score, 4
def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
yield from self.bpe_tokens()
@@ -303,12 +303,28 @@ class SentencePieceVocab:
piece = tokenizer.id_to_piece(i)
text: bytes = piece.encode("utf-8")
score: float = tokenizer.get_score(i)
yield text, score
toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
# NOTE: I think added_tokens are user defined.
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = 4
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
yield text, score, toktype
def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score
yield text.encode("utf-8"), score, 4
def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
yield from self.sentencepiece_tokens()
@@ -721,14 +737,16 @@ class OutputFile:
def add_meta_vocab(self, vocab: Vocab) -> None:
tokens = []
scores = []
for text, score in vocab.all_tokens():
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
self.gguf.add_tokenizer_model("llama")
self.gguf.add_token_list(tokens)
self.gguf.add_token_scores(scores)
#self.gguf.add_token_types(toktypes) # TODO: add this
self.gguf.add_token_types(toktypes)
# TODO: added / special tokens