mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	llava : introduce libmtmd (#12849)
* wip llava2 * migrated gemma3 to llava2 * add timings * correct pre/postfix * fix missing include * fix compilation unused var warn * update llava2_tokenize * change name llava2 --> mtmd * improve api * refine helpers * Update examples/llava/mtmd.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
		
							
								
								
									
										341
									
								
								examples/llava/mtmd.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										341
									
								
								examples/llava/mtmd.cpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,341 @@ | ||||
| #include "clip.h" | ||||
| #include "clip-impl.h" | ||||
| #include "mtmd.h" | ||||
|  | ||||
| #include "llama.h" | ||||
|  | ||||
| #include <algorithm> | ||||
| #include <cerrno> | ||||
| #include <cstdio> | ||||
| #include <cstdlib> | ||||
| #include <cstring> | ||||
| #include <limits> | ||||
| #include <vector> | ||||
|  | ||||
| struct mtmd_context { | ||||
|     struct clip_ctx * ctx_clip; | ||||
|     const struct llama_model * text_model; | ||||
|     std::vector<float> image_embd_v; // image embedding vector | ||||
|     bool print_timings; | ||||
|     int n_threads; | ||||
|     std::string image_marker; | ||||
|  | ||||
|     // TODO @ngxson : add timings | ||||
|  | ||||
|     mtmd_context(const char * mmproj_fname, | ||||
|                    const llama_model * text_model, | ||||
|                    const mtmd_context_params & ctx_params) : print_timings(ctx_params.print_timings), n_threads(ctx_params.n_threads), image_marker(ctx_params.image_marker) { | ||||
|         clip_context_params ctx_clip_params; | ||||
|         ctx_clip_params.use_gpu   = ctx_params.use_gpu; | ||||
|         ctx_clip_params.verbosity = ctx_params.verbosity; | ||||
|         ctx_clip = clip_init(mmproj_fname, ctx_clip_params); | ||||
|         if (!ctx_clip) { | ||||
|             throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname)); | ||||
|         } | ||||
|         this->text_model = text_model; | ||||
|     } | ||||
|  | ||||
|     ~mtmd_context() { | ||||
|         clip_free(ctx_clip); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| struct mtmd_image_tokens_data { | ||||
|     clip_image_f32_batch_ptr batch_f32; // preprocessed image patches | ||||
| }; | ||||
|  | ||||
| struct mtmd_image_tokens { | ||||
|     uint32_t nx; // number of tokens in x direction | ||||
|     uint32_t ny; // number of tokens in y direction | ||||
|     uint32_t n_tokens() const { return nx * ny; } | ||||
|     clip_image_f32_batch_ptr batch_f32; // preprocessed image patches | ||||
| }; | ||||
|  | ||||
| mtmd_context * mtmd_init_from_file(const char * mmproj_fname, | ||||
|         const struct llama_model * text_model, | ||||
|         const struct mtmd_context_params ctx_params) { | ||||
|     try { | ||||
|         return new mtmd_context(mmproj_fname, text_model, ctx_params); | ||||
|     } catch (const std::exception & e) { | ||||
|         LOG_ERR("%s: error: %s\n", __func__, e.what()); | ||||
|         return nullptr; | ||||
|     } | ||||
| } | ||||
|  | ||||
| void mtmd_free(mtmd_context * ctx) { | ||||
|     if (ctx) { | ||||
|         delete ctx; | ||||
|     } | ||||
| } | ||||
|  | ||||
| // copied from common_tokenize | ||||
| static std::vector<llama_token> mtmd_tokenize_text_internal( | ||||
|     const struct llama_vocab * vocab, | ||||
|            const std::string & text, | ||||
|                         bool   add_special, | ||||
|                         bool   parse_special) { | ||||
|     // upper limit for the number of tokens | ||||
|     int n_tokens = text.length() + 2 * add_special; | ||||
|     std::vector<llama_token> result(n_tokens); | ||||
|     n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); | ||||
|     if (n_tokens < 0) { | ||||
|         result.resize(-n_tokens); | ||||
|         int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); | ||||
|         GGML_ASSERT(check == -n_tokens); | ||||
|     } else { | ||||
|         result.resize(n_tokens); | ||||
|     } | ||||
|     return result; | ||||
| } | ||||
|  | ||||
| mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx, | ||||
|                                 const mtmd_input_text & text, | ||||
|                                 const std::vector<mtmd_bitmap> & bitmaps) { | ||||
|     mtmd_input_chunks * output = new mtmd_input_chunks; | ||||
|     auto vocab = llama_model_get_vocab(ctx->text_model); | ||||
|  | ||||
|     std::string prompt_modified(text.text); | ||||
|     std::string marker_modified(ctx->image_marker); | ||||
|     projector_type proj_type = clip_get_projector_type(ctx->ctx_clip); | ||||
|     // a bit hacky here, but works for now | ||||
|     // for some models, we need to add prefix and suffix to the image embeddings | ||||
|     if (proj_type == PROJECTOR_TYPE_GEMMA3) { | ||||
|         // <start_of_image> ... (image embeddings) ... <end_of_image> | ||||
|         marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>"; | ||||
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified); | ||||
|     } | ||||
|  | ||||
|     std::vector<std::string> parts = string_split_str(text.text, ctx->image_marker); | ||||
|     output->clear(); | ||||
|     output->reserve(parts.size()); | ||||
|  | ||||
|     size_t i_img = 0; | ||||
|  | ||||
|     for (const auto & part : parts) { | ||||
|         //printf("tokenizing part: %s\n", part.c_str()); | ||||
|         bool add_bos = &parts.front() == ∂ | ||||
|         auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special); | ||||
|         if (tokens.empty()) { | ||||
|             continue; | ||||
|         } | ||||
|         mtmd_input_chunk chunk{ | ||||
|             MTMD_INPUT_CHUNK_TYPE_TEXT, | ||||
|             std::move(tokens), | ||||
|             {}, | ||||
|         }; | ||||
|         output->emplace_back(std::move(chunk)); | ||||
|  | ||||
|         if (&parts.back() != &part) { | ||||
|             // add image token to middle of 2 parts | ||||
|  | ||||
|             if (i_img >= bitmaps.size()) { | ||||
|                 LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size()); | ||||
|                 return nullptr; | ||||
|             } | ||||
|  | ||||
|             // shim layer | ||||
|             clip_image_u8_ptr img_u8(clip_image_u8_init()); | ||||
|             img_u8->nx = bitmaps[i_img].nx; | ||||
|             img_u8->ny = bitmaps[i_img].ny; | ||||
|             img_u8->buf.resize(bitmaps[i_img].data.size()); | ||||
|             std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3); | ||||
|  | ||||
|             // preprocess image | ||||
|             clip_image_f32_batch_ptr batch_f32(new clip_image_f32_batch); | ||||
|             bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), batch_f32.get()); | ||||
|             if (!ok) { | ||||
|                 LOG_ERR("Unable to preprocess image\n"); | ||||
|                 return nullptr; | ||||
|             } | ||||
|  | ||||
|             mtmd_image_tokens * image_tokens = new mtmd_image_tokens; | ||||
|             image_tokens->nx = clip_n_patches(ctx->ctx_clip); // TODO @ngxson : use clip_n_patches_by_image | ||||
|             image_tokens->ny = 1; // TODO | ||||
|             image_tokens->batch_f32 = std::move(batch_f32); | ||||
|  | ||||
|             mtmd_input_chunk chunk{ | ||||
|                 MTMD_INPUT_CHUNK_TYPE_IMAGE, | ||||
|                 {}, | ||||
|                 image_tokens, | ||||
|             }; | ||||
|             output->emplace_back(std::move(chunk)); | ||||
|             i_img++; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     return output; | ||||
| } | ||||
|  | ||||
| void mtmd_input_chunks_free(mtmd_input_chunks * chunks) { | ||||
|     for (auto & chunk : *chunks) { | ||||
|         if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE && chunk.tokens_image) { | ||||
|             delete chunk.tokens_image; | ||||
|         } | ||||
|     } | ||||
|     delete chunks; | ||||
| } | ||||
|  | ||||
| int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) { | ||||
|     int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip); | ||||
|     ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd); | ||||
|     bool ok = clip_image_batch_encode( | ||||
|         ctx->ctx_clip, | ||||
|         ctx->n_threads, | ||||
|         image_tokens->batch_f32.get(), | ||||
|         ctx->image_embd_v.data()); | ||||
|     return ok ? 0 : 1; | ||||
| } | ||||
|  | ||||
| float * mtmd_get_output_embd(mtmd_context * ctx) { | ||||
|     return ctx->image_embd_v.data(); | ||||
| } | ||||
|  | ||||
| size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks) { | ||||
|     size_t n_tokens = 0; | ||||
|     for (auto & chunk : *chunks) { | ||||
|         if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) { | ||||
|             n_tokens += chunk.tokens_text.size(); | ||||
|         } else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { | ||||
|             n_tokens += chunk.tokens_image->n_tokens(); | ||||
|         } else { | ||||
|             GGML_ASSERT(false && "chunk type not supported"); | ||||
|         } | ||||
|     } | ||||
|     return n_tokens; | ||||
| } | ||||
|  | ||||
| // helper struct to make working with embd batch easier | ||||
| // note: this will be removed after llama_batch_ext refactoring | ||||
| struct decode_embd_batch { | ||||
|     std::vector<llama_pos>      pos; | ||||
|     std::vector<int32_t>        n_seq_id; | ||||
|     std::vector<llama_seq_id>   seq_id_0; | ||||
|     std::vector<llama_seq_id *> seq_ids; | ||||
|     std::vector<int8_t>         logits; | ||||
|     llama_batch batch; | ||||
|     decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) { | ||||
|         pos     .resize(n_tokens); | ||||
|         n_seq_id.resize(n_tokens); | ||||
|         seq_ids .resize(n_tokens + 1); | ||||
|         logits  .resize(n_tokens); | ||||
|         seq_id_0.resize(1); | ||||
|         seq_id_0[0] = seq_id; | ||||
|         seq_ids [n_tokens] = nullptr; | ||||
|         batch = { | ||||
|             /*n_tokens       =*/ n_tokens, | ||||
|             /*tokens         =*/ nullptr, | ||||
|             /*embd           =*/ embd, | ||||
|             /*pos            =*/ pos.data(), | ||||
|             /*n_seq_id       =*/ n_seq_id.data(), | ||||
|             /*seq_id         =*/ seq_ids.data(), | ||||
|             /*logits         =*/ logits.data(), | ||||
|         }; | ||||
|         for (int i = 0; i < n_tokens; i++) { | ||||
|             batch.pos     [i] = pos_0 + i; | ||||
|             batch.n_seq_id[i] = 1; | ||||
|             batch.seq_id  [i] = seq_id_0.data(); | ||||
|             batch.logits  [i] = false; | ||||
|         } | ||||
|     } | ||||
| }; | ||||
|  | ||||
| int32_t mtmd_helper_eval(mtmd_context * ctx, | ||||
|         llama_context * lctx, | ||||
|         mtmd_input_chunks * chunks, | ||||
|         llama_pos pos0, | ||||
|         llama_seq_id seq_id, | ||||
|         int32_t n_batch) { | ||||
|     int32_t ret; | ||||
|     llama_pos n_past = pos0; | ||||
|     llama_batch text_batch = llama_batch_init(n_batch, 0, 1); | ||||
|  | ||||
|     for (auto & chunk : *chunks) { | ||||
|         bool is_last = &chunk == &chunks->back(); | ||||
|         if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) { | ||||
|             // TODO @ngxson : may need to split into smaller batches | ||||
|             text_batch.n_tokens = chunk.tokens_text.size(); | ||||
|             for (size_t i = 0; i < chunk.tokens_text.size(); i++) { | ||||
|                 text_batch.token   [i]    = chunk.tokens_text[i]; | ||||
|                 text_batch.pos     [i]    = n_past++; | ||||
|                 text_batch.n_seq_id[i]    = 1; | ||||
|                 text_batch.seq_id  [i][0] = seq_id; | ||||
|                 text_batch.logits  [i]    = false; | ||||
|             } | ||||
|             if (is_last) { | ||||
|                 // always get logits for last input chunk | ||||
|                 text_batch.logits[text_batch.n_tokens - 1] = true; | ||||
|             } | ||||
|             ret = llama_decode(lctx, text_batch); | ||||
|             if (ret != 0) { | ||||
|                 LOG_ERR("failed to decode text\n"); | ||||
|                 llama_batch_free(text_batch); | ||||
|                 return ret; | ||||
|             } | ||||
|  | ||||
|         } else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { | ||||
|             GGML_ASSERT(!is_last && "logits for last image chunk is not yet support"); | ||||
|             GGML_ASSERT(chunk.tokens_image != nullptr); | ||||
|             int64_t t0 = ggml_time_ms(); | ||||
|             if (ctx->print_timings) { | ||||
|                 LOG_INF("encoding image...\n"); | ||||
|             } | ||||
|             ret = mtmd_encode(ctx, chunk.tokens_image); | ||||
|             if (ret != 0) { | ||||
|                 LOG_ERR("failed to encode image\n"); | ||||
|                 llama_batch_free(text_batch); | ||||
|                 return ret; | ||||
|             } | ||||
|             if (ctx->print_timings) { | ||||
|                 LOG_INF("image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0); | ||||
|             } | ||||
|  | ||||
|             int32_t n_tokens = chunk.tokens_image->n_tokens(); | ||||
|             float * embd = mtmd_get_output_embd(ctx); | ||||
|             decode_embd_batch batch_img(embd, n_tokens, n_past, 0); | ||||
|             int64_t t1 = ggml_time_ms(); | ||||
|             ret = llama_decode(lctx, batch_img.batch); | ||||
|             if (ret != 0) { | ||||
|                 LOG_ERR("failed to decode image\n"); | ||||
|                 llama_batch_free(text_batch); | ||||
|                 return ret; | ||||
|             } | ||||
|             if (ctx->print_timings) { | ||||
|                 LOG_INF("image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1); | ||||
|             } | ||||
|  | ||||
|             n_past += n_tokens; | ||||
|  | ||||
|         } else { | ||||
|             GGML_ASSERT(false && "chunk type not supported"); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     llama_batch_free(text_batch); | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
| int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output) { | ||||
|     clip_image_u8_ptr img_u8(clip_image_u8_init()); | ||||
|     bool ok = clip_image_load_from_bytes(buf, len, img_u8.get()); | ||||
|     if (!ok) { | ||||
|         LOG_ERR("Unable to load image from buffer\n"); | ||||
|         return 1; | ||||
|     } | ||||
|     unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny); | ||||
|     output.data.resize(output.nx * output.ny * 3); | ||||
|     std::memcpy(output.data.data(), data, output.nx * output.ny * 3); | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
| int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output) { | ||||
|     clip_image_u8_ptr img_u8(clip_image_u8_init()); | ||||
|     bool ok = clip_image_load_from_file(fname, img_u8.get()); | ||||
|     if (!ok) { | ||||
|         LOG_ERR("Unable to load image %s\n", fname); | ||||
|         return 1; | ||||
|     } | ||||
|     unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny); | ||||
|     output.data.resize(output.nx * output.ny * 3); | ||||
|     std::memcpy(output.data.data(), data, output.nx * output.ny * 3); | ||||
|     return 0; | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 Xuan-Son Nguyen
					Xuan-Son Nguyen