mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	Add LLaDA 8b Diffusion model (#14771)
* Add support for Llada-8b: diffusion model * Add README * Fix README and convert_hf_to_gguf * convert_hf_to_gguf.py: address review comments * Make everything in a single example * Remove model-specific sampling * Remove unused argmax * Remove braced initializers, improve README.md a bit * Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps * Remove adding the mask token * Move add_add_bos_token to set_vocab * use add_bool in gguf_writer.py
This commit is contained in:
		| @@ -869,6 +869,21 @@ void llama_model::load_hparams(llama_model_loader & ml) { | ||||
|                 hparams.causal_attn = false; | ||||
|             } | ||||
|             break; | ||||
|         case LLM_ARCH_LLADA: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); | ||||
|                 // LLaDA-8B has 32 layers, similar to LLaMA but for diffusion | ||||
|                 switch (hparams.n_layer) { | ||||
|                     case 32: | ||||
|                         type = LLM_TYPE_8B; | ||||
|                         break; | ||||
|                     default: | ||||
|                         type = LLM_TYPE_UNKNOWN; | ||||
|                 } | ||||
|                 // Set non-causal attention for diffusion models | ||||
|                 hparams.causal_attn = false; | ||||
|             } | ||||
|             break; | ||||
|         case LLM_ARCH_QWEN2MOE: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp, false); | ||||
| @@ -2149,6 +2164,53 @@ bool llama_model::load_tensors(llama_model_loader & ml) { | ||||
|                         } | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_LLADA: | ||||
|                 { | ||||
|                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); | ||||
|  | ||||
|                     // output | ||||
|                     output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); | ||||
|                     output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED); | ||||
|  | ||||
|                     // if output is NULL, init from the input tok embed | ||||
|                     if (output == NULL) { | ||||
|                         output = | ||||
|                             create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED); | ||||
|                     } | ||||
|  | ||||
|                     for (int i = 0; i < n_layer; ++i) { | ||||
|                         auto & layer = layers[i]; | ||||
|  | ||||
|                         layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); | ||||
|  | ||||
|                         // Use separate Q, K, V projections without bias, matching LLaDALlamaBlock | ||||
|                         layer.wq = | ||||
|                             create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0); | ||||
|                         layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0); | ||||
|                         layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0); | ||||
|                         // No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false | ||||
|                         layer.wo = | ||||
|                             create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0); | ||||
|                         layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED); | ||||
|  | ||||
|                         layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0); | ||||
|  | ||||
|                         layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 }, | ||||
|                                                          TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); | ||||
|  | ||||
|                         layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0); | ||||
|                         layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); | ||||
|                         layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0); | ||||
|  | ||||
|                         // optional MLP bias | ||||
|                         layer.ffn_gate_b = | ||||
|                             create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED); | ||||
|                         layer.ffn_down_b = | ||||
|                             create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED); | ||||
|                         layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED); | ||||
|                     } | ||||
|                 } | ||||
|                 break; | ||||
|             case LLM_ARCH_LLAMA4: | ||||
|                 { | ||||
|                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); | ||||
| @@ -8042,6 +8104,106 @@ struct llm_build_dream : public llm_graph_context { | ||||
|     } | ||||
| }; | ||||
|  | ||||
| struct llm_build_llada : public llm_graph_context { | ||||
|     llm_build_llada(const llama_model & model, const llm_graph_params & params) : | ||||
|         llm_graph_context(params) { | ||||
|         // LLaDA is similar to LLaMA but uses non-causal attention for diffusion | ||||
|         const int64_t n_embd_head = hparams.n_embd_head_v; | ||||
|  | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_rot); | ||||
|  | ||||
|         ggml_tensor * cur; | ||||
|         ggml_tensor * inpL; | ||||
|  | ||||
|         inpL = build_inp_embd(model.tok_embd); | ||||
|  | ||||
|         // inp_pos - contains the positions | ||||
|         ggml_tensor * inp_pos = build_inp_pos(); | ||||
|  | ||||
|         // Non-causal attention for diffusion | ||||
|         auto * inp_attn = build_attn_inp_no_cache(); | ||||
|  | ||||
|         ggml_tensor * inp_out_ids = build_inp_out_ids(); | ||||
|  | ||||
|         for (int il = 0; il < n_layer; ++il) { | ||||
|             ggml_tensor * inpSA = inpL; | ||||
|  | ||||
|             // norm | ||||
|             cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); | ||||
|             cb(cur, "attn_norm", il); | ||||
|  | ||||
|             // self-attention | ||||
|             { | ||||
|                 // compute separate Q, K, V projections without bias, matching LLaDALlamaBlock | ||||
|                 ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); | ||||
|                 ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); | ||||
|                 ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); | ||||
|  | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|  | ||||
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); | ||||
|                 Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); | ||||
|                 Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); | ||||
|  | ||||
|                 Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, | ||||
|                                      ext_factor, attn_factor, beta_fast, beta_slow); | ||||
|  | ||||
|                 Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, | ||||
|                                      ext_factor, attn_factor, beta_fast, beta_slow); | ||||
|  | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|  | ||||
|                 cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, | ||||
|                                  1.0f / sqrtf(float(n_embd_head)), il); | ||||
|             } | ||||
|  | ||||
|             if (il == n_layer - 1 && inp_out_ids) { | ||||
|                 cur   = ggml_get_rows(ctx0, cur, inp_out_ids); | ||||
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); | ||||
|             } | ||||
|  | ||||
|             ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); | ||||
|             cb(ffn_inp, "ffn_inp", il); | ||||
|  | ||||
|             // feed-forward network | ||||
|             cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); | ||||
|             cb(cur, "ffn_norm", il); | ||||
|  | ||||
|             cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, | ||||
|                             model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); | ||||
|             cb(cur, "ffn_out", il); | ||||
|  | ||||
|             cur = ggml_add(ctx0, cur, ffn_inp); | ||||
|  | ||||
|             cur = build_cvec(cur, il); | ||||
|             cb(cur, "l_out", il); | ||||
|  | ||||
|             // input for next layer | ||||
|             inpL = cur; | ||||
|         } | ||||
|  | ||||
|         cur = inpL; | ||||
|  | ||||
|         cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); | ||||
|  | ||||
|         cb(cur, "result_norm", -1); | ||||
|         res->t_embd = cur; | ||||
|  | ||||
|         // lm_head | ||||
|         cur = build_lora_mm(model.output, cur); | ||||
|  | ||||
|         cb(cur, "result_output", -1); | ||||
|         res->t_logits = cur; | ||||
|  | ||||
|         ggml_build_forward_expand(gf, cur); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| struct llm_build_qwen2vl : public llm_graph_context { | ||||
|     llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { | ||||
|         const int64_t n_embd_head = hparams.n_embd_head_v; | ||||
| @@ -17201,6 +17363,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params, | ||||
|         case LLM_ARCH_NEO_BERT: | ||||
|         case LLM_ARCH_WAVTOKENIZER_DEC: | ||||
|         case LLM_ARCH_DREAM: | ||||
|         case LLM_ARCH_LLADA: | ||||
|             { | ||||
|                 res = nullptr; | ||||
|             } break; | ||||
| @@ -17367,6 +17530,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { | ||||
|                 llm = std::make_unique<llm_build_dream>(*this, params); | ||||
|             } | ||||
|             break; | ||||
|         case LLM_ARCH_LLADA: | ||||
|             { | ||||
|                 llm = std::make_unique<llm_build_llada>(*this, params); | ||||
|             } | ||||
|             break; | ||||
|         case LLM_ARCH_QWEN2VL: | ||||
|             { | ||||
|                 llm = std::make_unique<llm_build_qwen2vl>(*this, params); | ||||
| @@ -17765,6 +17933,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { | ||||
|  | ||||
|         // use what we call a normal RoPE, operating on pairs of consecutive head values | ||||
|         case LLM_ARCH_LLAMA: | ||||
|         case LLM_ARCH_LLADA: | ||||
|         case LLM_ARCH_LLAMA4: | ||||
|         case LLM_ARCH_DECI: | ||||
|         case LLM_ARCH_BAICHUAN: | ||||
| @@ -17943,6 +18112,10 @@ bool llama_model_is_recurrent(const llama_model * model) { | ||||
|     return llm_arch_is_recurrent(model->arch); | ||||
| } | ||||
|  | ||||
| bool llama_model_is_diffusion(const llama_model * model) { | ||||
|     return llm_arch_is_diffusion(model->arch); | ||||
| } | ||||
|  | ||||
| const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) { | ||||
|     return model->tensors_by_name; | ||||
| } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Aman Gupta
					Aman Gupta