mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	cuda/cpu: Increase support for fp16 unary operations (ggml/1125)
* Support fp16 unary operations in the CUDA backend * cpu: increase fp16 support for unary operators in the CPU backend * cuda: increase fp16 support for unary operators in the CUDA backend * Add test cases for fp16 unary operators * metal: update supports_op for unary operators that don't support fp16, to prevent test-backend-ops from failing * metal: fix PR comments for unary op support after fp16 unary tests
This commit is contained in:
		
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,6 +1,7 @@
 | 
			
		||||
#include "clamp.cuh"
 | 
			
		||||
 | 
			
		||||
static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_clamp(const T * x, T * dst, const T min, const T max, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
@@ -10,25 +11,31 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
 | 
			
		||||
    dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void clamp_cuda(const T * x, T * dst, const T min, const T max, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
 | 
			
		||||
    clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
 | 
			
		||||
    op_clamp<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    float min;
 | 
			
		||||
    float max;
 | 
			
		||||
    memcpy(&min, dst->op_params, sizeof(float));
 | 
			
		||||
    memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
 | 
			
		||||
 | 
			
		||||
    clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        clamp_cuda((const half *)src0_d, (half *)dst_d, (half)min, (half)max, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        clamp_cuda((const float *)src0_d, (float *)dst_d, (float)min, (float)max, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -2147,6 +2147,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
 | 
			
		||||
            break;
 | 
			
		||||
        case GGML_OP_UNARY:
 | 
			
		||||
            switch (ggml_get_unary_op(dst)) {
 | 
			
		||||
                case GGML_UNARY_OP_ABS:
 | 
			
		||||
                    ggml_cuda_op_abs(ctx, dst);
 | 
			
		||||
                    break;
 | 
			
		||||
                case GGML_UNARY_OP_SGN:
 | 
			
		||||
                    ggml_cuda_op_sgn(ctx, dst);
 | 
			
		||||
                    break;
 | 
			
		||||
                case GGML_UNARY_OP_NEG:
 | 
			
		||||
                    ggml_cuda_op_neg(ctx, dst);
 | 
			
		||||
                    break;
 | 
			
		||||
@@ -2244,6 +2250,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
 | 
			
		||||
        case GGML_OP_CLAMP:
 | 
			
		||||
            ggml_cuda_op_clamp(ctx, dst);
 | 
			
		||||
            break;
 | 
			
		||||
        case GGML_OP_LOG:
 | 
			
		||||
            ggml_cuda_op_log(ctx, dst);
 | 
			
		||||
            break;
 | 
			
		||||
        case GGML_OP_NONE:
 | 
			
		||||
        case GGML_OP_RESHAPE:
 | 
			
		||||
        case GGML_OP_VIEW:
 | 
			
		||||
@@ -2962,6 +2971,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
 | 
			
		||||
    switch (op->op) {
 | 
			
		||||
        case GGML_OP_UNARY:
 | 
			
		||||
            switch (ggml_get_unary_op(op)) {
 | 
			
		||||
                case GGML_UNARY_OP_ABS:
 | 
			
		||||
                case GGML_UNARY_OP_SGN:
 | 
			
		||||
                case GGML_UNARY_OP_NEG:
 | 
			
		||||
                case GGML_UNARY_OP_STEP:
 | 
			
		||||
                case GGML_UNARY_OP_GELU:
 | 
			
		||||
@@ -3168,6 +3179,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
 | 
			
		||||
        case GGML_OP_SIN:
 | 
			
		||||
        case GGML_OP_COS:
 | 
			
		||||
        case GGML_OP_CLAMP:
 | 
			
		||||
        case GGML_OP_LOG:
 | 
			
		||||
            return true;
 | 
			
		||||
        case GGML_OP_CONT:
 | 
			
		||||
            return op->src[0]->type != GGML_TYPE_BF16;
 | 
			
		||||
 
 | 
			
		||||
@@ -1,6 +1,29 @@
 | 
			
		||||
#include "unary.cuh"
 | 
			
		||||
 | 
			
		||||
static __global__ void neg_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_abs(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    dst[i] = fabsf(x[i]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_sgn(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    dst[i] = (T)(x[i] > (T)0.f ? 1.f : ((x[i] < (T)0.f ? -1.f : 0.f)));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_neg(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
@@ -10,61 +33,67 @@ static __global__ void neg_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
    dst[i] = -x[i];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void step_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_step(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    dst[i] = x[i] > 0.0f;
 | 
			
		||||
    dst[i] = x[i] > (T)0.0f;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
    const float GELU_COEF_A    = 0.044715f;
 | 
			
		||||
    const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_gelu(const T * x, T * dst, const int k) {
 | 
			
		||||
    const T GELU_COEF_A    = 0.044715f;
 | 
			
		||||
    const T SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    float xi = x[i];
 | 
			
		||||
    dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
 | 
			
		||||
    T xi = x[i];
 | 
			
		||||
    dst[i] = (T)0.5f*xi*((T)1.0f + (T)tanhf(SQRT_2_OVER_PI*xi*((T)1.0f + GELU_COEF_A*xi*xi)));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
 | 
			
		||||
    const float GELU_QUICK_COEF = -1.702f;
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_gelu_quick(const T * x, T * dst, int k) {
 | 
			
		||||
    const T GELU_QUICK_COEF = -1.702f;
 | 
			
		||||
    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
 | 
			
		||||
    dst[i] = x[i] * ((T)1.0f / ((T)1.0f + (T)expf(GELU_QUICK_COEF * x[i])));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void silu_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_silu(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    dst[i] = x[i] / (1.0f + expf(-x[i]));
 | 
			
		||||
    dst[i] = x[i] / ((T)1.0f + (T)expf(-x[i]));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void silu_back_f32(
 | 
			
		||||
        const float * grad, const float * xf, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_silu_back(
 | 
			
		||||
        const T * grad, const T * xf, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    const float xfi = xf[i];
 | 
			
		||||
    const float s = 1.0f / (1.0f + expf(-xfi));
 | 
			
		||||
    dst[i] = grad[i] * s * (1.0f + xfi * (1.0f - s));
 | 
			
		||||
    const T xfi = xf[i];
 | 
			
		||||
    const T s = (T)1.0f / ((T)1.0f + (T)expf(-xfi));
 | 
			
		||||
    dst[i] = grad[i] * s * ((T)1.0f + xfi * ((T)1.0f - s));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void tanh_f32(const float * x, float * dst, int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_tanh(const T * x, T * dst, int k) {
 | 
			
		||||
    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
@@ -72,7 +101,8 @@ static __global__ void tanh_f32(const float * x, float * dst, int k) {
 | 
			
		||||
    dst[i] = tanhf(x[i]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void relu_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_relu(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
@@ -81,34 +111,38 @@ static __global__ void relu_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
    dst[i] = fmaxf(x[i], 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void sigmoid_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_sigmoid(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    dst[i] = 1.0f / (1.0f + expf(-x[i]));
 | 
			
		||||
    dst[i] = (T)1.0f / ((T)1.0f + (T)expf(-x[i]));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_hardsigmoid(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
 | 
			
		||||
    dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + (T)3.0f) / (T)6.0f));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_hardswish(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
 | 
			
		||||
    dst[i] = x[i] * (T)fminf(1.0f, fmaxf(0.0f, (x[i] + (T)3.0f) / (T)6.0f));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void exp_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_exp(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
@@ -117,15 +151,17 @@ static __global__ void exp_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
    dst[i] = expf(x[i]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_leaky_relu(const T * x, T * dst, const int k, const float negative_slope) {
 | 
			
		||||
    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
 | 
			
		||||
    dst[i] = (T)fmaxf(x[i], 0) + (T)fminf(x[i], 0.0f) * (T)negative_slope;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void sqr_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_sqr(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
@@ -134,7 +170,8 @@ static __global__ void sqr_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
    dst[i] = x[i] * x[i];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_sqrt(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
@@ -143,7 +180,8 @@ static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
    dst[i] = sqrtf(x[i]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void sin_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_sin(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
@@ -152,7 +190,8 @@ static __global__ void sin_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
    dst[i] = sinf(x[i]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static __global__ void cos_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_cos(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
@@ -161,145 +200,248 @@ static __global__ void cos_f32(const float * x, float * dst, const int k) {
 | 
			
		||||
    dst[i] = cosf(x[i]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void neg_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static __global__ void op_log(const T * x, T * dst, const int k) {
 | 
			
		||||
    const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
    if (i >= k) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    dst[i] = logf(x[i]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
static void abs_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE;
 | 
			
		||||
    neg_f32<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_abs<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void step_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void sgn_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE;
 | 
			
		||||
    op_sgn<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
static void neg_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE;
 | 
			
		||||
    op_neg<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
static void step_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_STEP_BLOCK_SIZE - 1) / CUDA_STEP_BLOCK_SIZE;
 | 
			
		||||
    step_f32<<<num_blocks, CUDA_STEP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_step<<<num_blocks, CUDA_STEP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void gelu_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
 | 
			
		||||
    gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_gelu<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void gelu_quick_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
 | 
			
		||||
    gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_gelu_quick<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void silu_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
 | 
			
		||||
    silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_silu<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void silu_back_f32_cuda(const float * grad, const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void silu_back_cuda(const T * grad, const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_SILU_BACK_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
 | 
			
		||||
    silu_back_f32<<<num_blocks, CUDA_SILU_BACK_BLOCK_SIZE, 0, stream>>>(grad, x, dst, k);
 | 
			
		||||
    op_silu_back<<<num_blocks, CUDA_SILU_BACK_BLOCK_SIZE, 0, stream>>>(grad, x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void tanh_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
 | 
			
		||||
    tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_tanh<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void relu_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
 | 
			
		||||
    relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_relu<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void sigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void sigmoid_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE;
 | 
			
		||||
    sigmoid_f32<<<num_blocks, CUDA_SIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_sigmoid<<<num_blocks, CUDA_SIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void hardsigmoid_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
 | 
			
		||||
    hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_hardsigmoid<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void hardswish_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
 | 
			
		||||
    hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_hardswish<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void exp_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void exp_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_EXP_BLOCK_SIZE - 1) / CUDA_EXP_BLOCK_SIZE;
 | 
			
		||||
    exp_f32<<<num_blocks, CUDA_EXP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_exp<<<num_blocks, CUDA_EXP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void leaky_relu_cuda(const T * x, T * dst, const int k, const float negative_slope, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
 | 
			
		||||
    leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
 | 
			
		||||
    op_leaky_relu<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void sqr_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
 | 
			
		||||
    sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_sqr<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void sqrt_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE;
 | 
			
		||||
    sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_sqrt<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void sin_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void sin_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_SIN_BLOCK_SIZE - 1) / CUDA_SIN_BLOCK_SIZE;
 | 
			
		||||
    sin_f32<<<num_blocks, CUDA_SIN_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_sin<<<num_blocks, CUDA_SIN_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void cos_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
template <class T>
 | 
			
		||||
static void cos_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_COS_BLOCK_SIZE - 1) / CUDA_COS_BLOCK_SIZE;
 | 
			
		||||
    cos_f32<<<num_blocks, CUDA_COS_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
    op_cos<<<num_blocks, CUDA_COS_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
static void log_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
 | 
			
		||||
    const int num_blocks = (k + CUDA_COS_BLOCK_SIZE - 1) / CUDA_COS_BLOCK_SIZE;
 | 
			
		||||
    op_log<<<num_blocks, CUDA_COS_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        abs_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        abs_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_sgn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        sgn_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        sgn_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    neg_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        neg_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        neg_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    step_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        step_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        step_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        gelu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        gelu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        silu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        silu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
@@ -314,179 +456,263 @@ void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    silu_back_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        silu_back_cuda((const half *)src0_d, (const half *)src1_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        silu_back_cuda((const float*)src0_d, (const float*)src1_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        gelu_quick_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        gelu_quick_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        tanh_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        tanh_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        relu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        relu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    sigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        sigmoid_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        sigmoid_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        hardsigmoid_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        hardsigmoid_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        hardswish_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        hardswish_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    exp_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        exp_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        exp_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    float negative_slope;
 | 
			
		||||
    memcpy(&negative_slope, dst->op_params, sizeof(float));
 | 
			
		||||
 | 
			
		||||
    leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        leaky_relu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), negative_slope, stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        leaky_relu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), negative_slope, stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        sqr_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        sqr_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        sqrt_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        sqrt_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    sin_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        sin_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        sin_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const float * src0_d = (const float *)src0->data;
 | 
			
		||||
    float * dst_d = (float *)dst->data;
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    cos_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        cos_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        cos_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
			
		||||
    const ggml_tensor * src0 = dst->src[0];
 | 
			
		||||
    const void * src0_d = src0->data;
 | 
			
		||||
    void * dst_d = dst->data;
 | 
			
		||||
    cudaStream_t stream = ctx.stream();
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
			
		||||
    GGML_ASSERT(src0->type == dst->type);
 | 
			
		||||
 | 
			
		||||
    if (src0->type == GGML_TYPE_F16) {
 | 
			
		||||
        log_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    } else {
 | 
			
		||||
        log_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -16,6 +16,10 @@
 | 
			
		||||
#define CUDA_SIN_BLOCK_SIZE 256
 | 
			
		||||
#define CUDA_COS_BLOCK_SIZE 256
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_sgn(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
 | 
			
		||||
@@ -49,3 +53,5 @@ void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
 | 
			
		||||
void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
 | 
			
		||||
 
 | 
			
		||||
@@ -1200,7 +1200,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
 | 
			
		||||
                case GGML_UNARY_OP_GELU_QUICK:
 | 
			
		||||
                case GGML_UNARY_OP_SILU:
 | 
			
		||||
                case GGML_UNARY_OP_ELU:
 | 
			
		||||
                    return ggml_is_contiguous(op->src[0]);
 | 
			
		||||
                    return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
 | 
			
		||||
                default:
 | 
			
		||||
                    return false;
 | 
			
		||||
            }
 | 
			
		||||
@@ -1210,21 +1210,26 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
 | 
			
		||||
        case GGML_OP_TRANSPOSE:
 | 
			
		||||
        case GGML_OP_PERMUTE:
 | 
			
		||||
        case GGML_OP_CONCAT:
 | 
			
		||||
            return true;
 | 
			
		||||
        case GGML_OP_ADD:
 | 
			
		||||
        case GGML_OP_SUB:
 | 
			
		||||
        case GGML_OP_ACC:
 | 
			
		||||
        case GGML_OP_MUL:
 | 
			
		||||
        case GGML_OP_DIV:
 | 
			
		||||
            return op->src[0]->type == GGML_TYPE_F32;
 | 
			
		||||
        case GGML_OP_ACC:
 | 
			
		||||
        case GGML_OP_REPEAT:
 | 
			
		||||
        case GGML_OP_SCALE:
 | 
			
		||||
        case GGML_OP_CLAMP:
 | 
			
		||||
        case GGML_OP_CONV_TRANSPOSE_1D:
 | 
			
		||||
            return true;
 | 
			
		||||
        case GGML_OP_CLAMP:
 | 
			
		||||
            return op->src[0]->type == GGML_TYPE_F32;
 | 
			
		||||
        case GGML_OP_SQR:
 | 
			
		||||
        case GGML_OP_SQRT:
 | 
			
		||||
        case GGML_OP_SIN:
 | 
			
		||||
        case GGML_OP_COS:
 | 
			
		||||
            return ggml_is_contiguous(op->src[0]);
 | 
			
		||||
            return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
 | 
			
		||||
        case GGML_OP_LOG:
 | 
			
		||||
            return false; // TODO: implement
 | 
			
		||||
        case GGML_OP_SUM_ROWS:
 | 
			
		||||
        case GGML_OP_SOFT_MAX:
 | 
			
		||||
        case GGML_OP_GROUP_NORM:
 | 
			
		||||
@@ -1254,10 +1259,11 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
 | 
			
		||||
        case GGML_OP_UPSCALE:
 | 
			
		||||
        case GGML_OP_PAD:
 | 
			
		||||
        case GGML_OP_PAD_REFLECT_1D:
 | 
			
		||||
        case GGML_OP_ARANGE:
 | 
			
		||||
        case GGML_OP_TIMESTEP_EMBEDDING:
 | 
			
		||||
        case GGML_OP_ARGSORT:
 | 
			
		||||
        case GGML_OP_LEAKY_RELU:
 | 
			
		||||
            return op->src[0]->type == GGML_TYPE_F32;
 | 
			
		||||
        case GGML_OP_ARANGE:
 | 
			
		||||
            return true;
 | 
			
		||||
        case GGML_OP_FLASH_ATTN_EXT:
 | 
			
		||||
            if (op->src[1]->type != op->src[2]->type) {
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user