mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
OpenCL: add fused group_norm/norm, mul, add (#15314)
* add fused group_norm/norm, mul, add * fix spacing * revert rms_norm logic * fix trailing whitespace
This commit is contained in:
@@ -420,9 +420,9 @@ struct ggml_backend_opencl_context {
|
||||
cl_kernel kernel_clamp;
|
||||
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
|
||||
kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
|
||||
cl_kernel kernel_norm;
|
||||
cl_kernel kernel_norm, kernel_norm_mul_add;
|
||||
cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
|
||||
cl_kernel kernel_group_norm;
|
||||
cl_kernel kernel_group_norm, kernel_group_norm_mul_add;
|
||||
cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
|
||||
cl_kernel kernel_soft_max, kernel_soft_max_4;
|
||||
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
|
||||
@@ -1161,7 +1161,8 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
||||
backend_ctx->program_norm =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_norm_mul_add = clCreateKernel(backend_ctx->program_norm, "kernel_norm_mul_add", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
@@ -1487,7 +1488,8 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
||||
backend_ctx->program_group_norm =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_group_norm_mul_add = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm_mul_add", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
@@ -2498,12 +2500,47 @@ static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx
|
||||
if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
|
||||
return false;
|
||||
}
|
||||
} else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
|
||||
const ggml_tensor *norm = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *mul = cgraph->nodes[node_idx+1];
|
||||
const ggml_tensor *add = cgraph->nodes[node_idx+2];
|
||||
const ggml_tensor *w = mul->src[0] == norm ? mul->src[1] : mul->src[0];
|
||||
const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
|
||||
|
||||
// norm fusion only supports F32
|
||||
if (norm->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (norm->src[0]->ne[0] % 4 != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!ggml_is_contiguous(norm->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
|
||||
return false;
|
||||
}
|
||||
} else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_GROUP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
|
||||
const ggml_tensor *gn = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *mul = cgraph->nodes[node_idx+1];
|
||||
const ggml_tensor *add = cgraph->nodes[node_idx+2];
|
||||
const ggml_tensor *w = mul->src[0] == gn ? mul->src[1] : mul->src[0];
|
||||
const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
|
||||
|
||||
if (gn->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!ggml_is_contiguous(gn->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
|
||||
static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
|
||||
static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
|
||||
|
||||
static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
@@ -2520,6 +2557,16 @@ static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggm
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
|
||||
ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
|
||||
i += 2;
|
||||
continue;
|
||||
}
|
||||
if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_GROUP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
|
||||
ggml_opencl_op_group_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
|
||||
i += 2;
|
||||
continue;
|
||||
}
|
||||
if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
|
||||
ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
|
||||
i++;
|
||||
@@ -5039,6 +5086,140 @@ static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor *
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
}
|
||||
|
||||
static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
|
||||
GGML_ASSERT(norm_tensor && mul_tensor && add_tensor);
|
||||
|
||||
const ggml_tensor * src0 = norm_tensor->src[0];
|
||||
const ggml_tensor * src1 = mul_tensor->src[0] == norm_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
|
||||
const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
|
||||
const ggml_tensor * dst = add_tensor;
|
||||
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
||||
ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
||||
cl_ulong offset2 = extra2->offset + src2->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, norm_tensor->op_params, sizeof(float));
|
||||
|
||||
const int ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
|
||||
const cl_ulong nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
|
||||
const int ne10 = src1->ne[0], ne11 = src1->ne[1], ne12 = src1->ne[2], ne13 = src1->ne[3];
|
||||
const cl_ulong nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
|
||||
const int ne20 = src2->ne[0], ne21 = src2->ne[1], ne22 = src2->ne[2], ne23 = src2->ne[3];
|
||||
const cl_ulong nb21 = src2->nb[1], nb22 = src2->nb[2], nb23 = src2->nb[3];
|
||||
const cl_ulong nbd1 = dst->nb[1], nbd2 = dst->nb[2], nbd3 = dst->nb[3];
|
||||
|
||||
size_t sgs;
|
||||
if (backend_ctx->gpu_family == ADRENO) sgs = 64;
|
||||
else if (backend_ctx->gpu_family == INTEL) sgs = 32;
|
||||
else GGML_ASSERT(false && "Unsupported GPU");
|
||||
|
||||
cl_kernel kernel = backend_ctx->kernel_norm_mul_add;
|
||||
|
||||
int nth = sgs;
|
||||
int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
|
||||
while (nth < ne00/4 && nth < max_workgroup_size) nth *= 2;
|
||||
nth = MIN(nth, max_workgroup_size);
|
||||
nth = MIN(nth, ne00/4);
|
||||
|
||||
size_t gws[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
|
||||
size_t lws[] = {(size_t)nth, 1, 1};
|
||||
size_t num_subgroups = (nth + sgs - 1) / sgs;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne13));
|
||||
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
|
||||
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne20));
|
||||
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne21));
|
||||
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne22));
|
||||
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne23));
|
||||
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb21));
|
||||
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb22));
|
||||
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb23));
|
||||
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nbd1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 30, sizeof(cl_ulong), &nbd2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_ulong), &nbd3));
|
||||
CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &eps));
|
||||
CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_float2) * num_subgroups, NULL));
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, gws, lws, dst);
|
||||
}
|
||||
|
||||
static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
|
||||
GGML_ASSERT(gn_tensor && mul_tensor && add_tensor);
|
||||
|
||||
const ggml_tensor * src0 = gn_tensor->src[0];
|
||||
const ggml_tensor * src1 = mul_tensor->src[0] == gn_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
|
||||
const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
|
||||
const ggml_tensor * dst = add_tensor;
|
||||
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
||||
ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
||||
cl_ulong offset2 = extra2->offset + src2->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
|
||||
int groups;
|
||||
float eps;
|
||||
memcpy(&groups, gn_tensor->op_params, sizeof(int));
|
||||
memcpy(&eps, (char *)gn_tensor->op_params + sizeof(int), sizeof(float));
|
||||
|
||||
cl_kernel kernel = backend_ctx->kernel_group_norm_mul_add;
|
||||
int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
|
||||
int ne = ggml_nelements(src0);
|
||||
int group_size = ne / groups;
|
||||
|
||||
size_t lws[] = { (size_t)MIN(max_workgroup_size, group_size) };
|
||||
size_t gws[] = { (size_t)groups * lws[0] };
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &group_size));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &eps));
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 1, gws, lws, dst);
|
||||
}
|
||||
|
||||
static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
|
||||
@@ -70,3 +70,52 @@ kernel void kernel_group_norm(
|
||||
dst[j] *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// group_norm_mul_add
|
||||
//------------------------------------------------------------------------------
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_32
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_group_norm_mul_add(
|
||||
global float * src0, ulong offset0,
|
||||
global float * src1, ulong offset1,
|
||||
global float * src2, ulong offset2,
|
||||
global float * dst, ulong offsetd,
|
||||
int ne,
|
||||
int group_size,
|
||||
float eps
|
||||
) {
|
||||
src0 = (global float *)((global char *)src0 + offset0);
|
||||
src1 = (global float *)((global char *)src1 + offset1);
|
||||
src2 = (global float *)((global char *)src2 + offset2);
|
||||
dst = (global float *)((global char *)dst + offsetd);
|
||||
|
||||
int start = get_group_id(0) * group_size;
|
||||
int end = start + group_size;
|
||||
if (end > ne) {
|
||||
end = ne;
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
float sum_sq = 0.0f;
|
||||
|
||||
for (int j = start + get_local_id(0); j < end; j += get_local_size(0)) {
|
||||
float val = src0[j];
|
||||
sum += val;
|
||||
sum_sq += val*val;
|
||||
}
|
||||
|
||||
sum = sub_group_reduce_add(sum);
|
||||
sum_sq = sub_group_reduce_add(sum_sq);
|
||||
|
||||
const float mean = sum / group_size;
|
||||
const float var = sum_sq / group_size - mean * mean;
|
||||
const float scale = rsqrt(var + eps);
|
||||
|
||||
for (int j = start + get_local_id(0); j < end; j += get_local_size(0)) {
|
||||
dst[j] = ((src0[j] - mean) * scale) * src1[j] + src2[j];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -79,3 +79,83 @@ kernel void kernel_norm(
|
||||
y[i00] = y[i00] * scale;
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// norm_mul_add
|
||||
//------------------------------------------------------------------------------
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_32
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_norm_mul_add(
|
||||
global char * src0_ptr, ulong src0_offset,
|
||||
global char * src1_ptr, ulong src1_offset,
|
||||
global char * src2_ptr, ulong src2_offset,
|
||||
global char * dst_ptr, ulong dst_offset,
|
||||
int ne00, int ne01, int ne02, int ne03,
|
||||
ulong nb01, ulong nb02, ulong nb03,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
ulong nb11, ulong nb12, ulong nb13,
|
||||
int ne20, int ne21, int ne22, int ne23,
|
||||
ulong nb21, ulong nb22, ulong nb23,
|
||||
ulong nbd1, ulong nbd2, ulong nbd3,
|
||||
float eps,
|
||||
local float2 * sums
|
||||
) {
|
||||
const int i03 = get_group_id(2);
|
||||
const int i02 = get_group_id(1);
|
||||
const int i01 = get_group_id(0);
|
||||
|
||||
global float4 * x = (global float4 *)(src0_ptr + src0_offset + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
global float4 * w = (global float4 *)(src1_ptr + src1_offset + (i01%ne11)*nb11 + (i02%ne12)*nb12 + (i03%ne13)*nb13);
|
||||
global float4 * b = (global float4 *)(src2_ptr + src2_offset + (i01%ne21)*nb21 + (i02%ne22)*nb22 + (i03%ne23)*nb23);
|
||||
global float4 * y = (global float4 *)(dst_ptr + dst_offset + i01*nbd1 + i02*nbd2 + i03*nbd3);
|
||||
|
||||
float p_sum = 0.0f;
|
||||
float p_sum_sq = 0.0f;
|
||||
|
||||
const int n_chunks = ne00 / 4;
|
||||
for (int i00 = get_local_id(0); i00 < n_chunks; i00 += get_local_size(0)) {
|
||||
float4 val = x[i00];
|
||||
p_sum += val.x + val.y + val.z + val.w;
|
||||
p_sum_sq += dot(val, val);
|
||||
}
|
||||
|
||||
p_sum = sub_group_reduce_add(p_sum);
|
||||
p_sum_sq = sub_group_reduce_add(p_sum_sq);
|
||||
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
sums[get_sub_group_id()] = (float2)(p_sum, p_sum_sq);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (get_local_id(0) == 0) {
|
||||
float sum = 0.0f;
|
||||
float sum_sq = 0.0f;
|
||||
for (uint i = 0; i < get_num_sub_groups(); ++i) {
|
||||
float2 s = sums[i];
|
||||
sum += s.x;
|
||||
sum_sq += s.y;
|
||||
}
|
||||
|
||||
const float inv_ne00 = 1.0f / (float)ne00;
|
||||
const float mean = sum * inv_ne00;
|
||||
const float variance = mad(-mean, mean, sum_sq * inv_ne00);
|
||||
|
||||
sums[0] = (float2)(mean, rsqrt(variance + eps));
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
const float2 mean_scale = sums[0];
|
||||
const float mean = mean_scale.x;
|
||||
const float scale = mean_scale.y;
|
||||
const float neg_mean_scale = -mean * scale;
|
||||
|
||||
for (int i00 = get_local_id(0); i00 < n_chunks; i00 += get_local_size(0)) {
|
||||
const int w_idx = ne10 > 1 ? i00 : 0;
|
||||
const int b_idx = ne20 > 1 ? i00 : 0;
|
||||
const float4 norm_x = mad(x[i00], (float4)scale, (float4)neg_mean_scale);
|
||||
y[i00] = mad(norm_x, w[w_idx], b[b_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user