mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	server : use llama_batch_ext
This commit is contained in:
		| @@ -1215,7 +1215,7 @@ struct server_slot { | |||||||
|     // only used for completion/embedding/infill/rerank |     // only used for completion/embedding/infill/rerank | ||||||
|     server_task_type task_type = SERVER_TASK_TYPE_COMPLETION; |     server_task_type task_type = SERVER_TASK_TYPE_COMPLETION; | ||||||
|  |  | ||||||
|     llama_batch_ptr batch_spec; |     llama_batch_ext_ptr batch_spec; | ||||||
|  |  | ||||||
|     llama_context * ctx = nullptr; |     llama_context * ctx = nullptr; | ||||||
|     llama_context * ctx_dft = nullptr; |     llama_context * ctx_dft = nullptr; | ||||||
| @@ -1787,7 +1787,7 @@ struct server_context { | |||||||
|  |  | ||||||
|     llama_context_params cparams_dft; |     llama_context_params cparams_dft; | ||||||
|  |  | ||||||
|     llama_batch_ptr batch; |     llama_batch_ext_ptr batch; | ||||||
|  |  | ||||||
|     bool clean_kv_cache = true; |     bool clean_kv_cache = true; | ||||||
|     bool add_bos_token  = true; |     bool add_bos_token  = true; | ||||||
| @@ -1940,7 +1940,7 @@ struct server_context { | |||||||
|             slot.n_predict = params_base.n_predict; |             slot.n_predict = params_base.n_predict; | ||||||
|  |  | ||||||
|             if (model_dft) { |             if (model_dft) { | ||||||
|                 slot.batch_spec.reset(llama_batch_init(params_base.speculative.n_max + 1, 1)); |                 slot.batch_spec.reset(llama_batch_ext_init(params_base.speculative.n_max + 1, 1)); | ||||||
|  |  | ||||||
|                 slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft); |                 slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft); | ||||||
|                 if (slot.ctx_dft == nullptr) { |                 if (slot.ctx_dft == nullptr) { | ||||||
| @@ -1976,7 +1976,7 @@ struct server_context { | |||||||
|             const int32_t n_batch = llama_n_batch(ctx); |             const int32_t n_batch = llama_n_batch(ctx); | ||||||
|  |  | ||||||
|             // only a single seq_id per token is needed |             // only a single seq_id per token is needed | ||||||
|             batch.reset(llama_batch_init(std::max(n_batch, params_base.n_parallel), 1)); |             batch.reset(llama_batch_ext_init(std::max(n_batch, params_base.n_parallel), 1)); | ||||||
|         } |         } | ||||||
|  |  | ||||||
|         metrics.init(); |         metrics.init(); | ||||||
| @@ -2094,7 +2094,7 @@ struct server_context { | |||||||
|         } |         } | ||||||
|  |  | ||||||
|         if (slot.ctx_dft) { |         if (slot.ctx_dft) { | ||||||
|             slot.batch_spec.reset(llama_batch_init(slot.params.speculative.n_max + 1, 1)); |             slot.batch_spec.reset(llama_batch_ext_init(slot.params.speculative.n_max + 1, 1)); | ||||||
|         } |         } | ||||||
|  |  | ||||||
|         slot.state = SLOT_STATE_STARTED; |         slot.state = SLOT_STATE_STARTED; | ||||||
| @@ -2402,7 +2402,7 @@ struct server_context { | |||||||
|         queue_results.send(std::move(res)); |         queue_results.send(std::move(res)); | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     void send_embedding(const server_slot & slot, llama_batch_ptr & batch) { |     void send_embedding(const server_slot & slot, llama_batch_ext_ptr & batch) { | ||||||
|         auto res = std::make_unique<server_task_result_embd>(); |         auto res = std::make_unique<server_task_result_embd>(); | ||||||
|         res->id        = slot.id_task; |         res->id        = slot.id_task; | ||||||
|         res->index     = slot.index; |         res->index     = slot.index; | ||||||
| @@ -2413,8 +2413,8 @@ struct server_context { | |||||||
|  |  | ||||||
|         std::vector<float> embd_res(n_embd, 0.0f); |         std::vector<float> embd_res(n_embd, 0.0f); | ||||||
|  |  | ||||||
|         for (int i = 0; i < llama_batch_get_n_tokens(batch.get()); ++i) { |         for (int i = 0; i < llama_batch_ext_get_n_tokens(batch.get()); ++i) { | ||||||
|             llama_batch_token_info tok = llama_batch_get_token_info(batch.get(), i); |             llama_batch_ext_token_info tok = llama_batch_ext_get_token_info(batch.get(), i); | ||||||
|             if (!tok.logits || tok.seq_id[0] != slot.id) { |             if (!tok.logits || tok.seq_id[0] != slot.id) { | ||||||
|                 continue; |                 continue; | ||||||
|             } |             } | ||||||
| @@ -2446,14 +2446,14 @@ struct server_context { | |||||||
|         queue_results.send(std::move(res)); |         queue_results.send(std::move(res)); | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     void send_rerank(const server_slot & slot, llama_batch_ptr & batch) { |     void send_rerank(const server_slot & slot, llama_batch_ext_ptr & batch) { | ||||||
|         auto res = std::make_unique<server_task_result_rerank>(); |         auto res = std::make_unique<server_task_result_rerank>(); | ||||||
|         res->id    = slot.id_task; |         res->id    = slot.id_task; | ||||||
|         res->index = slot.index; |         res->index = slot.index; | ||||||
|         res->n_tokens = slot.n_prompt_tokens; |         res->n_tokens = slot.n_prompt_tokens; | ||||||
|  |  | ||||||
|         for (int i = 0; i < llama_batch_get_n_tokens(batch.get()); ++i) { |         for (int i = 0; i < llama_batch_ext_get_n_tokens(batch.get()); ++i) { | ||||||
|             llama_batch_token_info tok = llama_batch_get_token_info(batch.get(), i); |             llama_batch_ext_token_info tok = llama_batch_ext_get_token_info(batch.get(), i); | ||||||
|             if (!tok.logits || tok.seq_id[0] != slot.id) { |             if (!tok.logits || tok.seq_id[0] != slot.id) { | ||||||
|                 continue; |                 continue; | ||||||
|             } |             } | ||||||
| @@ -2855,7 +2855,7 @@ struct server_context { | |||||||
|         } |         } | ||||||
|  |  | ||||||
|         // start populating the batch for this iteration |         // start populating the batch for this iteration | ||||||
|         common_batch_clear(batch.get()); |         llama_batch_ext_clear(batch.get()); | ||||||
|  |  | ||||||
|         // track if given slot can be batched with slots already in the batch |         // track if given slot can be batched with slots already in the batch | ||||||
|         server_slot * slot_batched = nullptr; |         server_slot * slot_batched = nullptr; | ||||||
| @@ -2877,9 +2877,10 @@ struct server_context { | |||||||
|                 continue; |                 continue; | ||||||
|             } |             } | ||||||
|  |  | ||||||
|             slot.i_batch = llama_batch_get_n_tokens(batch.get()); |             slot.i_batch = llama_batch_ext_get_n_tokens(batch.get()); | ||||||
|  |  | ||||||
|             common_batch_add(batch.get(), slot.sampled, slot.n_past, { slot.id }, true); |             std::array<llama_token, 1> seq_id = { slot.id }; | ||||||
|  |             llama_batch_ext_add_text_token(batch.get(), slot.sampled, slot.n_past, seq_id.data(), seq_id.size(), true); | ||||||
|  |  | ||||||
|             slot.n_past += 1; |             slot.n_past += 1; | ||||||
|  |  | ||||||
| @@ -2896,7 +2897,7 @@ struct server_context { | |||||||
|         int32_t n_ubatch = llama_n_ubatch(ctx); |         int32_t n_ubatch = llama_n_ubatch(ctx); | ||||||
|  |  | ||||||
|         // next, batch any pending prompts without exceeding n_batch |         // next, batch any pending prompts without exceeding n_batch | ||||||
|         if (params_base.cont_batching || llama_batch_get_n_tokens(batch.get()) == 0) { |         if (params_base.cont_batching || llama_batch_ext_get_n_tokens(batch.get()) == 0) { | ||||||
|             for (auto & slot : slots) { |             for (auto & slot : slots) { | ||||||
|                 // check if we can batch this slot with the previous one |                 // check if we can batch this slot with the previous one | ||||||
|                 if (slot.is_processing()) { |                 if (slot.is_processing()) { | ||||||
| @@ -3062,7 +3063,7 @@ struct server_context { | |||||||
|                     // non-causal tasks require to fit the entire prompt in the physical batch |                     // non-causal tasks require to fit the entire prompt in the physical batch | ||||||
|                     if (slot.is_non_causal()) { |                     if (slot.is_non_causal()) { | ||||||
|                         // cannot fit the prompt in the current batch - will try next iter |                         // cannot fit the prompt in the current batch - will try next iter | ||||||
|                         if (llama_batch_get_n_tokens(batch.get()) + slot.n_prompt_tokens > n_batch) { |                         if (llama_batch_ext_get_n_tokens(batch.get()) + slot.n_prompt_tokens > n_batch) { | ||||||
|                             continue; |                             continue; | ||||||
|                         } |                         } | ||||||
|                     } |                     } | ||||||
| @@ -3082,11 +3083,12 @@ struct server_context { | |||||||
|                     slot.cache_tokens.resize(slot.n_past); |                     slot.cache_tokens.resize(slot.n_past); | ||||||
|  |  | ||||||
|                     // add prompt tokens for processing in the current batch |                     // add prompt tokens for processing in the current batch | ||||||
|                     while (slot.n_past < slot.n_prompt_tokens && llama_batch_get_n_tokens(batch.get()) < n_batch) { |                     while (slot.n_past < slot.n_prompt_tokens && llama_batch_ext_get_n_tokens(batch.get()) < n_batch) { | ||||||
|                         // without pooling, we want to output the embeddings for all the tokens in the batch |                         // without pooling, we want to output the embeddings for all the tokens in the batch | ||||||
|                         const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE; |                         const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE; | ||||||
|  |  | ||||||
|                         common_batch_add(batch.get(), prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd); |                         std::array<llama_token, 1> seq_id = { slot.id }; | ||||||
|  |                         llama_batch_ext_add_text_token(batch.get(), prompt_tokens[slot.n_past], slot.n_past, seq_id.data(), seq_id.size(), true); | ||||||
|  |  | ||||||
|                         if (slot.params.cache_prompt) { |                         if (slot.params.cache_prompt) { | ||||||
|                             slot.cache_tokens.push_back(prompt_tokens[slot.n_past]); |                             slot.cache_tokens.push_back(prompt_tokens[slot.n_past]); | ||||||
| @@ -3096,13 +3098,13 @@ struct server_context { | |||||||
|                         slot.n_past++; |                         slot.n_past++; | ||||||
|                     } |                     } | ||||||
|  |  | ||||||
|                     SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, llama_batch_get_n_tokens(batch.get()), (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens); |                     SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, llama_batch_ext_get_n_tokens(batch.get()), (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens); | ||||||
|  |  | ||||||
|                     // entire prompt has been processed |                     // entire prompt has been processed | ||||||
|                     if (slot.n_past == slot.n_prompt_tokens) { |                     if (slot.n_past == slot.n_prompt_tokens) { | ||||||
|                         slot.state = SLOT_STATE_DONE_PROMPT; |                         slot.state = SLOT_STATE_DONE_PROMPT; | ||||||
|  |  | ||||||
|                         GGML_ASSERT(llama_batch_get_n_tokens(batch.get()) > 0); |                         GGML_ASSERT(llama_batch_ext_get_n_tokens(batch.get()) > 0); | ||||||
|  |  | ||||||
|                         common_sampler_reset(slot.smpl); |                         common_sampler_reset(slot.smpl); | ||||||
|  |  | ||||||
| @@ -3112,27 +3114,27 @@ struct server_context { | |||||||
|                         } |                         } | ||||||
|  |  | ||||||
|                         // extract the logits only for the last token |                         // extract the logits only for the last token | ||||||
|                         llama_batch_set_logits_last(batch.get()); |                         llama_batch_ext_set_logits_last(batch.get()); | ||||||
|  |  | ||||||
|                         slot.n_decoded = 0; |                         slot.n_decoded = 0; | ||||||
|                         slot.i_batch   = llama_batch_get_n_tokens(batch.get()) - 1; |                         slot.i_batch   = llama_batch_ext_get_n_tokens(batch.get()) - 1; | ||||||
|  |  | ||||||
|                         SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, llama_batch_get_n_tokens(batch.get())); |                         SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, llama_batch_ext_get_n_tokens(batch.get())); | ||||||
|                     } |                     } | ||||||
|                 } |                 } | ||||||
|  |  | ||||||
|                 if (llama_batch_get_n_tokens(batch.get()) >= n_batch) { |                 if (llama_batch_ext_get_n_tokens(batch.get()) >= n_batch) { | ||||||
|                     break; |                     break; | ||||||
|                 } |                 } | ||||||
|             } |             } | ||||||
|         } |         } | ||||||
|  |  | ||||||
|         if (llama_batch_get_n_tokens(batch.get()) == 0) { |         if (llama_batch_ext_get_n_tokens(batch.get()) == 0) { | ||||||
|             SRV_WRN("%s", "no tokens to decode\n"); |             SRV_WRN("%s", "no tokens to decode\n"); | ||||||
|             return; |             return; | ||||||
|         } |         } | ||||||
|  |  | ||||||
|         SRV_DBG("decoding batch, n_tokens = %d\n", llama_batch_get_n_tokens(batch.get())); |         SRV_DBG("decoding batch, n_tokens = %d\n", llama_batch_ext_get_n_tokens(batch.get())); | ||||||
|  |  | ||||||
|         if (slot_batched) { |         if (slot_batched) { | ||||||
|             // make sure we're in the right embedding mode |             // make sure we're in the right embedding mode | ||||||
| @@ -3142,12 +3144,12 @@ struct server_context { | |||||||
|         } |         } | ||||||
|  |  | ||||||
|         // process the created batch of tokens |         // process the created batch of tokens | ||||||
|         for (int32_t i = 0; i < llama_batch_get_n_tokens(batch.get()); i += n_batch) { |         for (int32_t i = 0; i < llama_batch_ext_get_n_tokens(batch.get()); i += n_batch) { | ||||||
|             const int32_t n_tokens = std::min(n_batch, llama_batch_get_n_tokens(batch.get()) - i); |             const int32_t n_tokens = std::min(n_batch, llama_batch_ext_get_n_tokens(batch.get()) - i); | ||||||
|  |  | ||||||
|             llama_batch_ptr batch_view(llama_batch_get_view(batch.get(), i, n_tokens)); |             llama_batch_ext_ptr batch_view(llama_batch_ext_get_view(batch.get(), i, n_tokens)); | ||||||
|  |  | ||||||
|             const int ret = llama_decode(ctx, batch_view.get()); |             const int ret = llama_text_decode(ctx, batch_view.get()); | ||||||
|             metrics.on_decoded(slots); |             metrics.on_decoded(slots); | ||||||
|  |  | ||||||
|             if (ret != 0) { |             if (ret != 0) { | ||||||
| @@ -3282,16 +3284,17 @@ struct server_context { | |||||||
|                 } |                 } | ||||||
|  |  | ||||||
|                 // construct the speculation batch |                 // construct the speculation batch | ||||||
|                 common_batch_clear(slot.batch_spec.get()); |                 llama_batch_ext_clear(slot.batch_spec.get()); | ||||||
|                 common_batch_add  (slot.batch_spec.get(), id, slot.n_past, { slot.id }, true); |                 std::array<llama_token, 1> seq_id = { slot.id }; | ||||||
|  |                 llama_batch_ext_add_text_token(slot.batch_spec.get(), id, slot.n_past, seq_id.data(), seq_id.size(), true); | ||||||
|  |  | ||||||
|                 for (size_t i = 0; i < draft.size(); ++i) { |                 for (size_t i = 0; i < draft.size(); ++i) { | ||||||
|                     common_batch_add(slot.batch_spec.get(), draft[i], slot.n_past + 1 + i, { slot.id }, true); |                     llama_batch_ext_add_text_token(slot.batch_spec.get(), draft[i], slot.n_past + 1, seq_id.data(), seq_id.size(), true); | ||||||
|                 } |                 } | ||||||
|  |  | ||||||
|                 SLT_DBG(slot, "decoding speculative batch, size = %d\n", llama_batch_get_n_tokens(slot.batch_spec.get())); |                 SLT_DBG(slot, "decoding speculative batch, size = %d\n", llama_batch_ext_get_n_tokens(slot.batch_spec.get())); | ||||||
|  |  | ||||||
|                 llama_decode(ctx, slot.batch_spec.get()); |                 llama_text_decode(ctx, slot.batch_spec.get()); | ||||||
|  |  | ||||||
|                 // the accepted tokens from the speculation |                 // the accepted tokens from the speculation | ||||||
|                 const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft); |                 const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft); | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Xuan Son Nguyen
					Xuan Son Nguyen