mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	mtmd : merge llava, gemma3 and minicpmv CLI into single llama-mtmd-cli (#13012)
				
					
				
			* mtmd : merge `llava-cli` and `gemma3-cli` into single `mtmd-cli` * support for minicpmv * remove cpp files of llava and minicpmv * update hot topics * mtmd : add not supported msg for qwen2vl * Update examples/llava/mtmd.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
		
							
								
								
									
										357
									
								
								examples/llava/mtmd-cli.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										357
									
								
								examples/llava/mtmd-cli.cpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,357 @@ | ||||
| #include "arg.h" | ||||
| #include "log.h" | ||||
| #include "common.h" | ||||
| #include "sampling.h" | ||||
| #include "llama.h" | ||||
| #include "ggml.h" | ||||
| #include "console.h" | ||||
| #include "chat.h" | ||||
| #include "mtmd.h" | ||||
|  | ||||
| #include <vector> | ||||
| #include <limits.h> | ||||
| #include <cinttypes> | ||||
|  | ||||
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) | ||||
| #include <signal.h> | ||||
| #include <unistd.h> | ||||
| #elif defined (_WIN32) | ||||
| #define WIN32_LEAN_AND_MEAN | ||||
| #ifndef NOMINMAX | ||||
| #define NOMINMAX | ||||
| #endif | ||||
| #include <windows.h> | ||||
| #include <signal.h> | ||||
| #endif | ||||
|  | ||||
| static bool g_is_generating = false; | ||||
|  | ||||
| /** | ||||
|  * Please note that this is NOT a production-ready stuff. | ||||
|  * It is a playground for trying multimodal support in llama.cpp. | ||||
|  * For contributors: please keep this code simple and easy to understand. | ||||
|  */ | ||||
|  | ||||
| static void show_additional_info(int /*argc*/, char ** argv) { | ||||
|     LOG( | ||||
|         "Experimental CLI for multimodal\n\n" | ||||
|         "Usage: %s [options] -m <model> --mmproj <mmproj> --image <image> -p <prompt>\n\n" | ||||
|         "  -m and --mmproj are required\n" | ||||
|         "  -hf user/repo can replace both -m and --mmproj in most cases\n" | ||||
|         "  --image and -p are optional, if NOT provided, the CLI will run in chat mode\n", | ||||
|         argv[0] | ||||
|     ); | ||||
| } | ||||
|  | ||||
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) | ||||
| static void sigint_handler(int signo) { | ||||
|     if (signo == SIGINT) { | ||||
|         if (g_is_generating) { | ||||
|             g_is_generating = false; | ||||
|         } else { | ||||
|             console::cleanup(); | ||||
|             LOG("\nInterrupted by user\n"); | ||||
|             _exit(130); | ||||
|         } | ||||
|     } | ||||
| } | ||||
| #endif | ||||
|  | ||||
| struct mtmd_cli_context { | ||||
|     mtmd_context_ptr ctx_vision; | ||||
|     common_init_result llama_init; | ||||
|  | ||||
|     llama_model       * model; | ||||
|     llama_context     * lctx; | ||||
|     const llama_vocab * vocab; | ||||
|     llama_batch         batch; | ||||
|     int                 n_batch; | ||||
|  | ||||
|     // note: we know that gemma3 template is "linear", meaning each turn is completely separated to another | ||||
|     // so here we don't need to keep track of chat history | ||||
|     common_chat_templates_ptr tmpls; | ||||
|  | ||||
|     // support for legacy templates (models not having EOT token) | ||||
|     llama_tokens antiprompt_tokens; | ||||
|  | ||||
|     int n_threads    = 1; | ||||
|     llama_pos n_past = 0; | ||||
|  | ||||
|     mtmd_cli_context(common_params & params) : llama_init(common_init_from_params(params)) { | ||||
|         model = llama_init.model.get(); | ||||
|         lctx = llama_init.context.get(); | ||||
|         vocab = llama_model_get_vocab(model); | ||||
|         n_threads = params.cpuparams.n_threads; | ||||
|         batch = llama_batch_init(params.n_batch, 0, 1); | ||||
|         n_batch = params.n_batch; | ||||
|  | ||||
|         if (!llama_model_chat_template(model, nullptr) && params.chat_template.empty()) { | ||||
|             LOG_ERR("Model does not have chat template.\n"); | ||||
|             LOG_ERR("  For old llava models, you may need to use '--chat-template vicuna'\n"); | ||||
|             LOG_ERR("  For MobileVLM models, use '--chat-template deepseek'\n"); | ||||
|             exit(1); | ||||
|         } | ||||
|  | ||||
|         tmpls = common_chat_templates_init(model, params.chat_template); | ||||
|         LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(tmpls.get(), params.use_jinja).c_str()); | ||||
|  | ||||
|         init_vision_context(params); | ||||
|  | ||||
|         // load antiprompt tokens for legacy templates | ||||
|         if (params.chat_template == "vicuna") { | ||||
|             antiprompt_tokens = common_tokenize(lctx, "ASSISTANT:", false, true); | ||||
|         } else if (params.chat_template == "deepseek") { | ||||
|             antiprompt_tokens = common_tokenize(lctx, "###", false, true); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     void init_vision_context(common_params & params) { | ||||
|         const char * clip_path = params.mmproj.path.c_str(); | ||||
|         ctx_vision.reset(mtmd_init_from_file(clip_path, model, mtmd_context_params{ | ||||
|             /* use_gpu */   true, | ||||
|             /* timings */   true, | ||||
|             /* n_threads */ params.cpuparams.n_threads, | ||||
|             /* verbosity */ GGML_LOG_LEVEL_INFO, | ||||
|         })); | ||||
|         if (!ctx_vision.get()) { | ||||
|             LOG_ERR("Failed to load vision model from %s\n", clip_path); | ||||
|             exit(1); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     bool check_antiprompt(const llama_tokens & generated_tokens) { | ||||
|         if (antiprompt_tokens.empty() || generated_tokens.size() < antiprompt_tokens.size()) { | ||||
|             return false; | ||||
|         } | ||||
|         return std::equal( | ||||
|             generated_tokens.end() - antiprompt_tokens.size(), | ||||
|             generated_tokens.end(), | ||||
|             antiprompt_tokens.begin() | ||||
|         ); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| struct decode_embd_batch { | ||||
|     std::vector<llama_pos>      pos; | ||||
|     std::vector<int32_t>        n_seq_id; | ||||
|     std::vector<llama_seq_id>   seq_id_0; | ||||
|     std::vector<llama_seq_id *> seq_ids; | ||||
|     std::vector<int8_t>         logits; | ||||
|     llama_batch batch; | ||||
|     decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) { | ||||
|         pos     .resize(n_tokens); | ||||
|         n_seq_id.resize(n_tokens); | ||||
|         seq_ids .resize(n_tokens + 1); | ||||
|         logits  .resize(n_tokens); | ||||
|         seq_id_0.resize(1); | ||||
|         seq_id_0[0] = seq_id; | ||||
|         seq_ids [n_tokens] = nullptr; | ||||
|         batch = { | ||||
|             /*n_tokens       =*/ n_tokens, | ||||
|             /*tokens         =*/ nullptr, | ||||
|             /*embd           =*/ embd, | ||||
|             /*pos            =*/ pos.data(), | ||||
|             /*n_seq_id       =*/ n_seq_id.data(), | ||||
|             /*seq_id         =*/ seq_ids.data(), | ||||
|             /*logits         =*/ logits.data(), | ||||
|         }; | ||||
|         for (int i = 0; i < n_tokens; i++) { | ||||
|             batch.pos     [i] = pos_0 + i; | ||||
|             batch.n_seq_id[i] = 1; | ||||
|             batch.seq_id  [i] = seq_id_0.data(); | ||||
|             batch.logits  [i] = false; | ||||
|         } | ||||
|     } | ||||
| }; | ||||
|  | ||||
| static int generate_response(mtmd_cli_context & ctx, common_sampler * smpl, int n_predict) { | ||||
|     llama_tokens generated_tokens; | ||||
|     for (int i = 0; i < n_predict; i++) { | ||||
|         if (i > n_predict || !g_is_generating) { | ||||
|             printf("\n"); | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         llama_token token_id = common_sampler_sample(smpl, ctx.lctx, -1); | ||||
|         generated_tokens.push_back(token_id); | ||||
|         common_sampler_accept(smpl, token_id, true); | ||||
|  | ||||
|         if (llama_vocab_is_eog(ctx.vocab, token_id) || ctx.check_antiprompt(generated_tokens)) { | ||||
|             printf("\n"); | ||||
|             break; // end of generation | ||||
|         } | ||||
|  | ||||
|         printf("%s", common_token_to_piece(ctx.lctx, token_id).c_str()); | ||||
|         fflush(stdout); | ||||
|  | ||||
|         // eval the token | ||||
|         common_batch_clear(ctx.batch); | ||||
|         common_batch_add(ctx.batch, token_id, ctx.n_past++, {0}, true); | ||||
|         if (llama_decode(ctx.lctx, ctx.batch)) { | ||||
|             LOG_ERR("failed to decode token\n"); | ||||
|             return 1; | ||||
|         } | ||||
|     } | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
| static int eval_message(mtmd_cli_context & ctx, common_chat_msg & msg, std::vector<std::string> & images_fname, bool add_bos = false) { | ||||
|     std::vector<mtmd_bitmap> bitmaps; | ||||
|  | ||||
|     common_chat_templates_inputs tmpl_inputs; | ||||
|     tmpl_inputs.messages = {msg}; | ||||
|     tmpl_inputs.add_generation_prompt = true; | ||||
|     tmpl_inputs.use_jinja = false; // jinja is buggy here | ||||
|     auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs); | ||||
|     LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str()); | ||||
|  | ||||
|     for (auto & fname : images_fname) { | ||||
|         mtmd_bitmap bitmap; | ||||
|         if (mtmd_helper_bitmap_init_from_file(fname.c_str(), bitmap)) { | ||||
|             LOG_ERR("Unable to load image %s\n", fname.c_str()); | ||||
|             return 2; // image not found | ||||
|         } | ||||
|         bitmaps.push_back(std::move(bitmap)); | ||||
|     } | ||||
|  | ||||
|     mtmd_input_text text; | ||||
|     text.text          = formatted_chat.prompt; | ||||
|     text.add_special   = add_bos; | ||||
|     text.parse_special = true; | ||||
|     mtmd_input_chunks chunks; | ||||
|     int32_t res = mtmd_tokenize(ctx.ctx_vision.get(), chunks, text, bitmaps); | ||||
|     if (res != 0) { | ||||
|         LOG_ERR("Unable to tokenize prompt, res = %d\n", res); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     if (mtmd_helper_eval(ctx.ctx_vision.get(), ctx.lctx, chunks, ctx.n_past, 0, ctx.n_batch)) { | ||||
|         LOG_ERR("Unable to eval prompt\n"); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     ctx.n_past += mtmd_helper_get_n_tokens(chunks); | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
| int main(int argc, char ** argv) { | ||||
|     ggml_time_init(); | ||||
|  | ||||
|     common_params params; | ||||
|     params.sampling.temp = 0.2; // lower temp by default for better quality | ||||
|  | ||||
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) { | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     common_init(); | ||||
|  | ||||
|     if (params.mmproj.path.empty()) { | ||||
|         show_additional_info(argc, argv); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     mtmd_cli_context ctx(params); | ||||
|     printf("%s: %s\n", __func__, params.model.path.c_str()); | ||||
|  | ||||
|     bool is_single_turn = !params.prompt.empty() && !params.image.empty(); | ||||
|  | ||||
|     struct common_sampler * smpl = common_sampler_init(ctx.model, params.sampling); | ||||
|     int n_predict = params.n_predict < 0 ? INT_MAX : params.n_predict; | ||||
|  | ||||
|     // ctrl+C handling | ||||
|     { | ||||
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) | ||||
|         struct sigaction sigint_action; | ||||
|         sigint_action.sa_handler = sigint_handler; | ||||
|         sigemptyset (&sigint_action.sa_mask); | ||||
|         sigint_action.sa_flags = 0; | ||||
|         sigaction(SIGINT, &sigint_action, NULL); | ||||
| #elif defined (_WIN32) | ||||
|         auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { | ||||
|             return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; | ||||
|         }; | ||||
|         SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); | ||||
| #endif | ||||
|     } | ||||
|  | ||||
|     if (is_single_turn) { | ||||
|         g_is_generating = true; | ||||
|         if (params.prompt.find("<__image__>") == std::string::npos) { | ||||
|             params.prompt += " <__image__>"; | ||||
|         } | ||||
|         common_chat_msg msg; | ||||
|         msg.role = "user"; | ||||
|         msg.content = params.prompt; | ||||
|         if (eval_message(ctx, msg, params.image, true)) { | ||||
|             return 1; | ||||
|         } | ||||
|         if (generate_response(ctx, smpl, n_predict)) { | ||||
|             return 1; | ||||
|         } | ||||
|  | ||||
|     } else { | ||||
|         LOG("\n Running in chat mode, available commands:"); | ||||
|         LOG("\n   /image <path>    load an image"); | ||||
|         LOG("\n   /clear           clear the chat history"); | ||||
|         LOG("\n   /quit or /exit   exit the program"); | ||||
|         LOG("\n"); | ||||
|  | ||||
|         bool is_first_msg = true; | ||||
|         std::vector<std::string> images_fname; | ||||
|         std::string content; | ||||
|  | ||||
|         while (true) { | ||||
|             g_is_generating = false; | ||||
|             LOG("\n> "); | ||||
|             console::set_display(console::user_input); | ||||
|             std::string line; | ||||
|             console::readline(line, false); | ||||
|             console::set_display(console::reset); | ||||
|             line = string_strip(line); | ||||
|             if (line.empty()) { | ||||
|                 continue; | ||||
|             } | ||||
|             if (line == "/quit" || line == "/exit") { | ||||
|                 break; | ||||
|             } | ||||
|             if (line == "/clear") { | ||||
|                 ctx.n_past = 0; | ||||
|                 llama_kv_self_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS | ||||
|                 LOG("Chat history cleared\n\n"); | ||||
|                 continue; | ||||
|             } | ||||
|             g_is_generating = true; | ||||
|             if (line.find("/image") == 0) { | ||||
|                 std::string image = line.substr(7); | ||||
|                 images_fname.push_back(string_strip(image)); | ||||
|                 content += "<__image__>"; | ||||
|                 continue; | ||||
|             } else { | ||||
|                 content += line; | ||||
|             } | ||||
|             common_chat_msg msg; | ||||
|             msg.role = "user"; | ||||
|             msg.content = content; | ||||
|             int ret = eval_message(ctx, msg, images_fname, is_first_msg); | ||||
|             if (ret == 2) { | ||||
|                 // non-fatal error | ||||
|                 images_fname.clear(); | ||||
|                 content.clear(); | ||||
|                 continue; | ||||
|             } | ||||
|             if (ret) { | ||||
|                 return 1; | ||||
|             } | ||||
|             if (generate_response(ctx, smpl, n_predict)) { | ||||
|                 return 1; | ||||
|             } | ||||
|             images_fname.clear(); | ||||
|             content.clear(); | ||||
|             is_first_msg = false; | ||||
|         } | ||||
|     } | ||||
|     llama_perf_context_print(ctx.lctx); | ||||
|     return 0; | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 Xuan-Son Nguyen
					Xuan-Son Nguyen