mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
tests : add ggml_set_rows
This commit is contained in:
@@ -1213,6 +1213,78 @@ struct test_get_rows_back : public test_case {
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_SET_ROWS
|
||||
struct test_set_rows : public test_case {
|
||||
const ggml_type type;
|
||||
const int n; // cols
|
||||
const int m; // rows
|
||||
const int r; // rows to set
|
||||
const int b0; // batch size
|
||||
const int b1; // batch size
|
||||
const int bs; // batch size src (for testing broadcast)
|
||||
const bool v; // view (non-contiguous src1)
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR7(type, n, m, r, b0, bs, v);
|
||||
}
|
||||
|
||||
test_set_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, int bs = 1, bool v = false)
|
||||
: type(type), n(n), m(m), r(r), b0(b), b1(3), bs(bs), v(v) {
|
||||
GGML_ASSERT(b0 % bs == 0 && "b0 must be a multiple of bs");
|
||||
GGML_ASSERT(r <= m && "r must be less than or equal to m");
|
||||
}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, n, m, b0, b1);
|
||||
ggml_set_name(dst, "dst");
|
||||
|
||||
ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n, r, b0, b1);
|
||||
ggml_set_name(src, "src");
|
||||
|
||||
ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, r, bs, b1);
|
||||
ggml_set_name(row_idxs, "row_idxs");
|
||||
|
||||
if (v) {
|
||||
src = ggml_view_4d(ctx, src, n, r/2, b0, b1, src->nb[1], src->nb[2], src->nb[3], 0);
|
||||
row_idxs = ggml_view_3d(ctx, row_idxs, r/2, bs, b1, row_idxs->nb[1], row_idxs->nb[2], 0);
|
||||
ggml_set_name(row_idxs, "view_of_rows");
|
||||
}
|
||||
|
||||
ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
std::random_device rd;
|
||||
std::default_random_engine rng(rd());
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_I64) {
|
||||
if (ggml_is_view_op(t->op)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int i2 = 0; i2 < t->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < t->ne[1]; i1++) {
|
||||
std::vector<int64_t> data(m);
|
||||
for (int i = 0; i < m; i++) {
|
||||
data[i] = i;
|
||||
}
|
||||
std::shuffle(data.begin(), data.end(), rng);
|
||||
data.resize(t->ne[0]);
|
||||
|
||||
const size_t offs = i1*t->nb[1] + i2*t->nb[2];
|
||||
ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_ARGMAX
|
||||
struct test_argmax : public test_case {
|
||||
const ggml_type type;
|
||||
@@ -3984,6 +4056,15 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
||||
test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
|
||||
for (ggml_type type : all_types) {
|
||||
for (int b : {1, 7}) {
|
||||
for (bool v : {false, true}) {
|
||||
test_cases.emplace_back(new test_set_rows(type, 256, 5, 4, b, 1, v));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (ggml_type type_input : {GGML_TYPE_F32}) {
|
||||
for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
|
||||
for (int k0 : {1, 3}) {
|
||||
|
||||
Reference in New Issue
Block a user