mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-07 09:57:00 +00:00
CUDA: add FLOOR, CEIL, ROUND, TRUNC unary ops (#16917)
This commit is contained in:
@@ -2499,6 +2499,18 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_UNARY_OP_XIELU:
|
||||
ggml_cuda_op_xielu(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_FLOOR:
|
||||
ggml_cuda_op_floor(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_CEIL:
|
||||
ggml_cuda_op_ceil(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_ROUND:
|
||||
ggml_cuda_op_round(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_TRUNC:
|
||||
ggml_cuda_op_trunc(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -3769,6 +3781,10 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_UNARY_OP_TANH:
|
||||
case GGML_UNARY_OP_EXP:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
case GGML_UNARY_OP_FLOOR:
|
||||
case GGML_UNARY_OP_CEIL:
|
||||
case GGML_UNARY_OP_ROUND:
|
||||
case GGML_UNARY_OP_TRUNC:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
default:
|
||||
return false;
|
||||
|
||||
@@ -85,6 +85,22 @@ static __device__ __forceinline__ float op_elu(float x) {
|
||||
return (x > 0.f) ? x : expm1f(x);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_floor(float x) {
|
||||
return floorf(x);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_ceil(float x) {
|
||||
return ceilf(x);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_round(float x) {
|
||||
return round(x);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_trunc(float x) {
|
||||
return trunc(x);
|
||||
}
|
||||
|
||||
template <float (*op)(float), typename T>
|
||||
static __global__ void unary_op_kernel(const T * x, T * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
@@ -201,6 +217,22 @@ void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
void ggml_cuda_op_elu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_elu>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_floor(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_floor>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_ceil(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_ceil>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_round(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_round>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_trunc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_trunc>(ctx, dst);
|
||||
}
|
||||
/* gated ops */
|
||||
|
||||
template <float (*op)(float), typename T>
|
||||
|
||||
@@ -63,6 +63,14 @@ void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_elu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_floor(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_ceil(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_round(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_trunc(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_reglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
Reference in New Issue
Block a user