mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
CANN: format code using .clang-format (#15863)
This commit applies .clang-format rules to all source files under the ggml-cann directory to ensure consistent coding style and readability. The .clang-format option `SortIncludes: false` has been set to disable automatic reordering of include directives. No functional changes are introduced. Co-authored-by: hipudding <huafengchun@gmail.com>
This commit is contained in:
89
ggml/src/ggml-cann/acl_tensor.cpp
Executable file → Normal file
89
ggml/src/ggml-cann/acl_tensor.cpp
Executable file → Normal file
@@ -51,28 +51,31 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
|
||||
return ACL_DT_UNDEFINED;
|
||||
}
|
||||
|
||||
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
size_t* nb, int64_t dims, aclFormat format,
|
||||
size_t offset) {
|
||||
aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
|
||||
int64_t * ne,
|
||||
size_t * nb,
|
||||
int64_t dims,
|
||||
aclFormat format,
|
||||
size_t offset) {
|
||||
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
|
||||
// added.
|
||||
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
if (ne == nullptr) {
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
acl_ne[i] = tensor->ne[i];
|
||||
acl_ne[i] = tensor->ne[i];
|
||||
// The step size of acl is in elements.
|
||||
acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
|
||||
}
|
||||
} else {
|
||||
// With bcast
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_ne[i] = ne[i];
|
||||
acl_ne[i] = ne[i];
|
||||
acl_stride[i] = nb[i] / ggml_element_size(tensor);
|
||||
}
|
||||
}
|
||||
|
||||
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
|
||||
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
|
||||
int64_t acl_storage_len = 1;
|
||||
for (int i = 0; i < final_dims; i++) {
|
||||
acl_storage_len += (acl_ne[i] - 1) * acl_stride[i];
|
||||
@@ -84,15 +87,13 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
std::reverse(acl_ne, acl_ne + final_dims);
|
||||
std::reverse(acl_stride, acl_stride + final_dims);
|
||||
|
||||
aclTensor* acl_tensor = aclCreateTensor(
|
||||
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
|
||||
elem_offset, format, &acl_storage_len, 1,
|
||||
tensor->data);
|
||||
aclTensor * acl_tensor = aclCreateTensor(acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
|
||||
elem_offset, format, &acl_storage_len, 1, tensor->data);
|
||||
|
||||
return acl_tensor;
|
||||
}
|
||||
|
||||
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
|
||||
bool ggml_cann_need_bcast(const ggml_tensor * t0, const ggml_tensor * t1) {
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
|
||||
return true;
|
||||
@@ -101,15 +102,16 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
|
||||
const ggml_tensor* src1,
|
||||
int64_t* bcast_src0_ne,
|
||||
int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
|
||||
size_t* bcast_src1_nb) {
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor * src0,
|
||||
const ggml_tensor * src1,
|
||||
int64_t * bcast_src0_ne,
|
||||
int64_t * bcast_src1_ne,
|
||||
size_t * bcast_src0_nb,
|
||||
size_t * bcast_src1_nb) {
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0));
|
||||
int bcast_dim_cnt = 0;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
int64_t nr = src0->ne[i] / src1->ne[i];
|
||||
int64_t nr = src0->ne[i] / src1->ne[i];
|
||||
bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
|
||||
bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
|
||||
bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
|
||||
@@ -119,21 +121,26 @@ int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
|
||||
// Need to add an extra dim.
|
||||
bcast_src0_ne[bcast_dim_cnt] = nr;
|
||||
bcast_src1_ne[bcast_dim_cnt] = 1;
|
||||
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
|
||||
bcast_src0_ne[bcast_dim_cnt - 1];
|
||||
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
|
||||
bcast_src1_ne[bcast_dim_cnt - 1];
|
||||
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] * bcast_src0_ne[bcast_dim_cnt - 1];
|
||||
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] * bcast_src1_ne[bcast_dim_cnt - 1];
|
||||
bcast_dim_cnt++;
|
||||
}
|
||||
}
|
||||
return bcast_dim_cnt;
|
||||
}
|
||||
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(
|
||||
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
|
||||
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
|
||||
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
|
||||
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(const int64_t * input_ne,
|
||||
const int64_t * weight_ne,
|
||||
const int64_t * dst_ne,
|
||||
const size_t * input_nb,
|
||||
const size_t * weight_nb,
|
||||
const size_t * dst_nb,
|
||||
int64_t * bcast_input_ne,
|
||||
int64_t * bcast_weight_ne,
|
||||
int64_t * bcast_dst_ne,
|
||||
size_t * bcast_input_nb,
|
||||
size_t * bcast_weight_nb,
|
||||
size_t * bcast_dst_nb) {
|
||||
// input and dst shoule in same shape, except first two dims.
|
||||
GGML_ASSERT(input_ne[2] == dst_ne[2]);
|
||||
GGML_ASSERT(input_ne[3] == dst_ne[3]);
|
||||
@@ -148,34 +155,30 @@ int64_t ggml_cann_get_mulmat_bcast_shape(
|
||||
// Do not use bcast in the first two dimensions because we only support
|
||||
// the bcast batch dimension. Just copy them.
|
||||
if (i < 2 || nr == 1) {
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
|
||||
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
|
||||
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_dim_cnt++;
|
||||
} else {
|
||||
// Need to add an extra dim.
|
||||
bcast_input_ne[bcast_dim_cnt] = nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = nr;
|
||||
bcast_input_ne[bcast_dim_cnt] = nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = nr;
|
||||
bcast_weight_ne[bcast_dim_cnt] = 1;
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
||||
bcast_dim_cnt++;
|
||||
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
|
||||
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
||||
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
|
||||
bcast_input_ne[bcast_dim_cnt - 1];
|
||||
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
|
||||
bcast_dst_ne[bcast_dim_cnt - 1];
|
||||
bcast_weight_nb[bcast_dim_cnt] =
|
||||
bcast_weight_nb[bcast_dim_cnt - 1] *
|
||||
bcast_weight_ne[bcast_dim_cnt - 1];
|
||||
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] * bcast_input_ne[bcast_dim_cnt - 1];
|
||||
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] * bcast_dst_ne[bcast_dim_cnt - 1];
|
||||
bcast_weight_nb[bcast_dim_cnt] = bcast_weight_nb[bcast_dim_cnt - 1] * bcast_weight_ne[bcast_dim_cnt - 1];
|
||||
bcast_dim_cnt++;
|
||||
}
|
||||
}
|
||||
|
||||
97
ggml/src/ggml-cann/acl_tensor.h
Executable file → Normal file
97
ggml/src/ggml-cann/acl_tensor.h
Executable file → Normal file
@@ -62,10 +62,12 @@ aclDataType ggml_cann_type_mapping(ggml_type type);
|
||||
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
|
||||
* @return Pointer to the created ACL tensor.
|
||||
*/
|
||||
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = nullptr,
|
||||
size_t* nb = nullptr, int64_t dims = 0,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0);
|
||||
aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
|
||||
int64_t * ne = nullptr,
|
||||
size_t * nb = nullptr,
|
||||
int64_t dims = 0,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0);
|
||||
|
||||
/**
|
||||
* @brief Template for creating an ACL tensor from provided parameters. typename TYPE
|
||||
@@ -87,12 +89,15 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = null
|
||||
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
|
||||
* @return Pointer to the created ACL tensor.
|
||||
*/
|
||||
template<typename TYPE>
|
||||
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
TYPE type_size, int64_t* ne, TYPE* nb,
|
||||
int64_t dims,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0) {
|
||||
template <typename TYPE>
|
||||
aclTensor * ggml_cann_create_tensor(void * data_ptr,
|
||||
aclDataType dtype,
|
||||
TYPE type_size,
|
||||
int64_t * ne,
|
||||
TYPE * nb,
|
||||
int64_t dims,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0) {
|
||||
int64_t tmp_ne[GGML_MAX_DIMS * 2];
|
||||
int64_t tmp_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
@@ -109,9 +114,8 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
std::reverse(tmp_ne, tmp_ne + dims);
|
||||
std::reverse(tmp_stride, tmp_stride + dims);
|
||||
|
||||
aclTensor* acl_tensor =
|
||||
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
|
||||
format, &acl_storage_len, 1, data_ptr);
|
||||
aclTensor * acl_tensor =
|
||||
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, format, &acl_storage_len, 1, data_ptr);
|
||||
|
||||
return acl_tensor;
|
||||
}
|
||||
@@ -132,7 +136,7 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
* to 1. If such a dimension is found, broadcasting is required to align t1
|
||||
* with t0 for element-wise operations.
|
||||
*/
|
||||
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
|
||||
bool ggml_cann_need_bcast(const ggml_tensor * t0, const ggml_tensor * t1);
|
||||
|
||||
/**
|
||||
* @brief Computes broadcast shapes and strides for two ggml_tensors.
|
||||
@@ -187,19 +191,21 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
|
||||
* dim1 in a inserted dim, should add nb for dim1,
|
||||
* and all other nb moves to next in order.
|
||||
*/
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
int64_t* bcast_ne_src0, int64_t* bcast_ne_src1,
|
||||
size_t* bcast_nb_src0, size_t* bcast_nb_src1);
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor * src0,
|
||||
const ggml_tensor * src1,
|
||||
int64_t * bcast_ne_src0,
|
||||
int64_t * bcast_ne_src1,
|
||||
size_t * bcast_nb_src0,
|
||||
size_t * bcast_nb_src1);
|
||||
|
||||
// Bcast macro to avoid duplicate code.
|
||||
#define BCAST_SHAPE(src0, src1) \
|
||||
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_bcast_shape( \
|
||||
src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, bcast_##src0##_nb, \
|
||||
bcast_##src1##_nb);
|
||||
#define BCAST_SHAPE(src0, src1) \
|
||||
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_bcast_shape(src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, \
|
||||
bcast_##src0##_nb, bcast_##src1##_nb);
|
||||
|
||||
#define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
|
||||
|
||||
@@ -233,26 +239,31 @@ int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* sr
|
||||
* before cast dim.
|
||||
* @sa ggml_cann_get_bcast_shape
|
||||
*/
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(
|
||||
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
|
||||
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
|
||||
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
|
||||
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb);
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(const int64_t * input_ne,
|
||||
const int64_t * weight_ne,
|
||||
const int64_t * dst_ne,
|
||||
const size_t * input_nb,
|
||||
const size_t * weight_nb,
|
||||
const size_t * dst_nb,
|
||||
int64_t * bcast_input_ne,
|
||||
int64_t * bcast_weight_ne,
|
||||
int64_t * bcast_dst_ne,
|
||||
size_t * bcast_input_nb,
|
||||
size_t * bcast_weight_nb,
|
||||
size_t * bcast_dst_nb);
|
||||
|
||||
// Bcast macro to avoid duplicate code.
|
||||
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
|
||||
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
|
||||
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, \
|
||||
bcast_##input##_ne, bcast_##weight##_ne, bcast_##dst##_ne, \
|
||||
bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
|
||||
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
|
||||
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
|
||||
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, bcast_##input##_ne, bcast_##weight##_ne, \
|
||||
bcast_##dst##_ne, bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
|
||||
|
||||
#define BCAST_MUL_MAT_PARAM(tensor) \
|
||||
bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
|
||||
#define BCAST_MUL_MAT_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
|
||||
|
||||
#endif // CANN_ACL_TENSOR_H
|
||||
|
||||
2508
ggml/src/ggml-cann/aclnn_ops.cpp
Executable file → Normal file
2508
ggml/src/ggml-cann/aclnn_ops.cpp
Executable file → Normal file
File diff suppressed because it is too large
Load Diff
401
ggml/src/ggml-cann/aclnn_ops.h
Executable file → Normal file
401
ggml/src/ggml-cann/aclnn_ops.h
Executable file → Normal file
@@ -62,7 +62,7 @@
|
||||
* @param dst The ggml tensor representing the destination, which op is
|
||||
* GGML_OP_REPEAT and specifies the desired dimensions.
|
||||
*/
|
||||
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_repeat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN
|
||||
@@ -82,7 +82,7 @@ void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result of the Leaky ReLU
|
||||
* activation is stored, which op is `GGML_OP_LEAKY_RELU`
|
||||
*/
|
||||
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_leaky_relu(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Concatenates multiple tensors along a specified dimension using the
|
||||
@@ -97,7 +97,7 @@ void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @attention tensorList length should be 2 and the dimension using for concat
|
||||
* default to 1.
|
||||
*/
|
||||
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_concat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Generates a sequence of evenly spaced values within a specified
|
||||
@@ -113,7 +113,7 @@ void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* `start`, 'stop' and 'step' are in dst->op_params and dst->op is
|
||||
* `GGML_OP_ARANGE`.
|
||||
*/
|
||||
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_arange(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a clamp operation to the elements of a ggml tensor using the
|
||||
@@ -131,7 +131,7 @@ void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the clamped values will be stored.
|
||||
* dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params.
|
||||
*/
|
||||
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_clamp(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Scales the elements of a ggml tensor by a constant factor using the
|
||||
@@ -148,7 +148,7 @@ void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the scaled values will be stored.
|
||||
* dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params.
|
||||
*/
|
||||
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_scale(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Sorts the elements of a ggml tensor and returns the indices that
|
||||
@@ -163,7 +163,7 @@ void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the sorted indices will be stored.
|
||||
* dst->op is `GGML_OP_ARGSORT`.
|
||||
*/
|
||||
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_argsort(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Layer Normalization for a ggml tensor using the CANN
|
||||
@@ -185,7 +185,7 @@ void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the normalized values will be stored.
|
||||
* @attention `Var` defaults to dst->ne[0].
|
||||
*/
|
||||
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Group Normalization for a ggml tensor using the CANN
|
||||
@@ -209,7 +209,7 @@ void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*
|
||||
* @attention eps defaults to 1e-6f.
|
||||
*/
|
||||
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_group_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the accumulation of tensors using the CANN backend.
|
||||
@@ -228,7 +228,7 @@ void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the accumulated values will be stored.
|
||||
* `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`.
|
||||
*/
|
||||
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_acc(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the sum of elements along the last dimension of a ggml tensor
|
||||
@@ -244,7 +244,7 @@ void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*
|
||||
* @attention `reduce_dims` defaults to 3, which means the last dimension.
|
||||
*/
|
||||
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_sum_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the sum of elements in a ggml tensor.
|
||||
@@ -258,7 +258,7 @@ void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*
|
||||
*/
|
||||
|
||||
void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_sum(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using
|
||||
@@ -274,8 +274,7 @@ void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the upsampled values will be stored.
|
||||
* dst->op is `GGML_OP_UPSCALE`.
|
||||
*/
|
||||
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
|
||||
ggml_tensor* dst);
|
||||
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Pads a ggml tensor to match the dimensions of the destination tensor
|
||||
@@ -290,7 +289,7 @@ void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
|
||||
* @param dst The destination tensor, which specifies the target dimensions for
|
||||
* padding. dst->op is `GGML_OP_PAD`.
|
||||
*/
|
||||
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_pad(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Executes a 2D pooling operation on a ggml tensor using the CANN
|
||||
@@ -307,7 +306,7 @@ void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor on which the pooling operation is to be
|
||||
* performed. dst->op is `GGML_OP_POOL_2D`.
|
||||
*/
|
||||
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_pool2d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Duplicates a ggml tensor using the CANN backend.
|
||||
@@ -326,7 +325,7 @@ void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* different shape and dst is no-contiguous.
|
||||
* @note: This func need to simplify.
|
||||
*/
|
||||
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_dup(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor
|
||||
@@ -348,7 +347,7 @@ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the normalized values will be stored.
|
||||
* dst->op is `GGML_OP_RMS_NORM`.
|
||||
*/
|
||||
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_rms_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a diagonal mask to the tensor with a specified value.
|
||||
@@ -363,7 +362,7 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* `GGML_OP_DIAG_MASK`
|
||||
* @param value The value to use for masking.
|
||||
*/
|
||||
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value);
|
||||
void ggml_cann_diag_mask(ggml_backend_cann_context & ctx, ggml_tensor * dst, float value);
|
||||
|
||||
/**
|
||||
* @brief Performs an image-to-column transformation on the input tensor.
|
||||
@@ -378,7 +377,7 @@ void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float
|
||||
* @param dst The destination tensor that stores the result of the operation.
|
||||
* dst->op is `GGML_OP_IM2COL`.
|
||||
*/
|
||||
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_im2col(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes time step embeddings using sine and cosine functions.
|
||||
@@ -392,10 +391,10 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result of the embedding operation
|
||||
* will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`.
|
||||
*/
|
||||
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_timestep_embedding(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
// @see ggml_cann_dup.
|
||||
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_cpy(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the softmax activation with optional masking.
|
||||
@@ -417,7 +416,7 @@ void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result will be stored. dst->op is
|
||||
* `GGML_OP_SOFTMAX`.
|
||||
*/
|
||||
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_softmax(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Extracts specific rows from a tensor based on indices.
|
||||
@@ -429,7 +428,7 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the extracted rows will be stored.
|
||||
*/
|
||||
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_get_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Writes specific rows into a tensor at positions specified by indices.
|
||||
@@ -441,7 +440,7 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the specified rows will be updated.
|
||||
*/
|
||||
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_set_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Executes matrix multiplication for the given tensor.
|
||||
@@ -454,7 +453,7 @@ void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor for storing the result of the matrix
|
||||
* multiplication. dst->op is `GGML_OP_MUL_MAT`.
|
||||
*/
|
||||
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_mul_mat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies Rotary Positional Embedding (RoPE) to the input tensor.
|
||||
@@ -477,7 +476,7 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @note The function currently does not support cases where the freq_scale is
|
||||
* not equal 1.
|
||||
*/
|
||||
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the index of the maximum value along the specified dimension
|
||||
@@ -492,7 +491,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the indices of the maximum values will
|
||||
* be stored. dst->op is `GGML_OP_ARGMAX`.
|
||||
*/
|
||||
void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_argmax(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Adds two tensors element-wise and stores the result in a destination
|
||||
@@ -509,8 +508,10 @@ void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param acl_src1 The second source tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
|
||||
void aclnn_add(ggml_backend_cann_context & ctx,
|
||||
aclTensor * acl_src0,
|
||||
aclTensor * acl_src1,
|
||||
aclTensor * acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Sub two tensors element-wise and stores the result in a destination
|
||||
@@ -527,8 +528,10 @@ void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
* @param acl_src1 The second source tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
|
||||
void aclnn_sub(ggml_backend_cann_context & ctx,
|
||||
aclTensor * acl_src0,
|
||||
aclTensor * acl_src1,
|
||||
aclTensor * acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Performs element-wise multiplication of two tensors and stores the
|
||||
@@ -546,8 +549,10 @@ void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
* @param acl_other The second tensor for element-wise multiplication.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
|
||||
void aclnn_mul(ggml_backend_cann_context & ctx,
|
||||
aclTensor * acl_src,
|
||||
aclTensor * acl_other,
|
||||
aclTensor * acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Matrix division, optionally in-place.
|
||||
@@ -567,8 +572,10 @@ void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
* @param inplace Flag indicating whether to perform the operation in-place on
|
||||
* `acl_src`.
|
||||
*/
|
||||
void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
|
||||
void aclnn_div(ggml_backend_cann_context & ctx,
|
||||
aclTensor * acl_src,
|
||||
aclTensor * acl_other,
|
||||
aclTensor * acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Applies element-wise cosine function to the elements of a tensor.
|
||||
@@ -584,8 +591,7 @@ void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
* @param acl_dst The destination tensor where the cosine results will be
|
||||
* stored.
|
||||
*/
|
||||
void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_dst);
|
||||
void aclnn_cos(ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Applies element-wise sine function to the elements of a tensor.
|
||||
@@ -602,8 +608,7 @@ void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
* @param acl_src The source tensor on which the sine function will be applied.
|
||||
* @param acl_dst The destination tensor where the sine results will be stored.
|
||||
*/
|
||||
void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_dst);
|
||||
void aclnn_sin(ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one
|
||||
@@ -621,8 +626,12 @@ void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
|
||||
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
|
||||
*/
|
||||
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
|
||||
aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst);
|
||||
void bcast_shape(ggml_tensor * src0,
|
||||
ggml_tensor * src1,
|
||||
ggml_tensor * dst,
|
||||
aclTensor ** acl_src0,
|
||||
aclTensor ** acl_src1,
|
||||
aclTensor ** acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the 1D transposed convolution (deconvolution) of a ggml
|
||||
@@ -637,7 +646,7 @@ void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
|
||||
* @param dst The destination tensor where the transposed convolution result
|
||||
* will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`.
|
||||
*/
|
||||
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor
|
||||
@@ -662,7 +671,7 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
|
||||
* @param dst The destination tensor where the ELU-activated result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_ELU`.
|
||||
*/
|
||||
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_elu(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the mean of a ggml tensor element-wise using the CANN backend.
|
||||
@@ -677,7 +686,7 @@ void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the mean result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_MEAN`.
|
||||
*/
|
||||
void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_mean(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies 1D reflect padding to a ggml tensor using the CANN backend.
|
||||
@@ -692,7 +701,7 @@ void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the padded result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`.
|
||||
*/
|
||||
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Counts the number of equal elements in two ggml tensors using the CANN backend.
|
||||
@@ -708,7 +717,7 @@ void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_COUNT_EQUAL`.
|
||||
*/
|
||||
void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_count_equal(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the Step activation function to a ggml tensor using the CANN backend.
|
||||
@@ -723,7 +732,7 @@ void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_STEP`.
|
||||
*/
|
||||
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_step(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Performs the Flash Attention extended operator using the CANN backend.
|
||||
@@ -738,59 +747,46 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_FLASH_ATTN_EXT`.
|
||||
*/
|
||||
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_flash_attn_ext(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/*
|
||||
* @brief A generic wrapper for ACL resources with custom deleter support.
|
||||
*/
|
||||
using any_acl_resource = std::unique_ptr<void, std::function<void(void*)>>;
|
||||
using any_acl_resource = std::unique_ptr<void, std::function<void(void *)>>;
|
||||
|
||||
/**
|
||||
* @brief Trait structure used to define how to destroy a given ACL resource type.
|
||||
*
|
||||
* @tparam T ACL resource type.
|
||||
*/
|
||||
template<typename T>
|
||||
struct acl_resource_traits;
|
||||
template <typename T> struct acl_resource_traits;
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclTensor, defines how to destroy an aclTensor resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclTensor> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyTensor(static_cast<aclTensor*>(p)));
|
||||
}
|
||||
template <> struct acl_resource_traits<aclTensor> {
|
||||
static void destroy(void * p) { ACL_CHECK(aclDestroyTensor(static_cast<aclTensor *>(p))); }
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclIntArray, defines how to destroy an aclIntArray resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclIntArray> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray*>(p)));
|
||||
}
|
||||
template <> struct acl_resource_traits<aclIntArray> {
|
||||
static void destroy(void * p) { ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray *>(p))); }
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclScalar, defines how to destroy an aclScalar resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclScalar> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyScalar(static_cast<aclScalar*>(p)));
|
||||
}
|
||||
template <> struct acl_resource_traits<aclScalar> {
|
||||
static void destroy(void * p) { ACL_CHECK(aclDestroyScalar(static_cast<aclScalar *>(p))); }
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclTensorList, defines how to destroy an aclTensorList resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclTensorList> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList*>(p)));
|
||||
}
|
||||
template <> struct acl_resource_traits<aclTensorList> {
|
||||
static void destroy(void * p) { ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList *>(p))); }
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -800,14 +796,8 @@ struct acl_resource_traits<aclTensorList> {
|
||||
* @param ptr Raw pointer to ACL resource.
|
||||
* @return any_acl_resource Smart pointer that handles destruction.
|
||||
*/
|
||||
template<typename T>
|
||||
any_acl_resource make_acl_resource(T* ptr) {
|
||||
return any_acl_resource(
|
||||
static_cast<void*>(ptr),
|
||||
[](void* p) {
|
||||
acl_resource_traits<T>::destroy(p);
|
||||
}
|
||||
);
|
||||
template <typename T> any_acl_resource make_acl_resource(T * ptr) {
|
||||
return any_acl_resource(static_cast<void *>(ptr), [](void * p) { acl_resource_traits<T>::destroy(p); });
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -817,8 +807,7 @@ any_acl_resource make_acl_resource(T* ptr) {
|
||||
* @param vec Target vector to hold ACL resources.
|
||||
* @param args Raw pointers to ACL resources.
|
||||
*/
|
||||
template<typename... Args>
|
||||
void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) {
|
||||
template <typename... Args> void register_acl_resources(std::vector<any_acl_resource> & vec, Args *... args) {
|
||||
(vec.emplace_back(make_acl_resource(args)), ...);
|
||||
}
|
||||
|
||||
@@ -826,39 +815,36 @@ void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) {
|
||||
* @brief Task class that wraps the execution of an aclnn function call.
|
||||
*/
|
||||
class aclnn_task : public cann_task {
|
||||
public:
|
||||
aclnn_task(aclnn_func_t aclnn_func, void * workspace_addr,
|
||||
uint64_t workspace_size, aclOpExecutor * executor,
|
||||
aclrtStream stream) :
|
||||
aclnn_func_(aclnn_func),
|
||||
workspace_addr_(workspace_addr),
|
||||
workspace_size_(workspace_size),
|
||||
executor_(executor),
|
||||
stream_(stream) {}
|
||||
virtual void run_task() override {
|
||||
ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_));
|
||||
}
|
||||
private:
|
||||
aclnn_func_t aclnn_func_;
|
||||
void * workspace_addr_;
|
||||
uint64_t workspace_size_;
|
||||
aclOpExecutor * executor_;
|
||||
aclrtStream stream_;
|
||||
public:
|
||||
aclnn_task(aclnn_func_t aclnn_func,
|
||||
void * workspace_addr,
|
||||
uint64_t workspace_size,
|
||||
aclOpExecutor * executor,
|
||||
aclrtStream stream) :
|
||||
aclnn_func_(aclnn_func),
|
||||
workspace_addr_(workspace_addr),
|
||||
workspace_size_(workspace_size),
|
||||
executor_(executor),
|
||||
stream_(stream) {}
|
||||
|
||||
virtual void run_task() override { ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_)); }
|
||||
private:
|
||||
aclnn_func_t aclnn_func_;
|
||||
void * workspace_addr_;
|
||||
uint64_t workspace_size_;
|
||||
aclOpExecutor * executor_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Task class that releases ACL resources after usage.
|
||||
*/
|
||||
class release_resource_task : public cann_task {
|
||||
public:
|
||||
release_resource_task(std::vector<any_acl_resource>&& resources){
|
||||
resource_ = std::move(resources);
|
||||
}
|
||||
public:
|
||||
release_resource_task(std::vector<any_acl_resource> && resources) { resource_ = std::move(resources); }
|
||||
|
||||
virtual void run_task() override {
|
||||
resource_.clear();
|
||||
}
|
||||
private:
|
||||
virtual void run_task() override { resource_.clear(); }
|
||||
private:
|
||||
std::vector<any_acl_resource> resource_;
|
||||
};
|
||||
|
||||
@@ -866,38 +852,40 @@ private:
|
||||
* @brief Task class for performing asynchronous memory copy operations.
|
||||
*/
|
||||
class async_memcpy_task : public cann_task {
|
||||
public:
|
||||
async_memcpy_task(void* dst, const void* src, size_t size,
|
||||
aclrtMemcpyKind kind, aclrtStream stream)
|
||||
: dst_(dst), src_(src), size_(size), kind_(kind), stream_(stream) {}
|
||||
public:
|
||||
async_memcpy_task(void * dst, const void * src, size_t size, aclrtMemcpyKind kind, aclrtStream stream) :
|
||||
dst_(dst),
|
||||
src_(src),
|
||||
size_(size),
|
||||
kind_(kind),
|
||||
stream_(stream) {}
|
||||
|
||||
virtual void run_task() override {
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_));
|
||||
}
|
||||
private:
|
||||
void* dst_;
|
||||
const void* src_;
|
||||
size_t size_;
|
||||
virtual void run_task() override { ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_)); }
|
||||
private:
|
||||
void * dst_;
|
||||
const void * src_;
|
||||
size_t size_;
|
||||
aclrtMemcpyKind kind_;
|
||||
aclrtStream stream_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Task class for performing asynchronous memory set operations.
|
||||
*/
|
||||
class async_memset_task : public cann_task {
|
||||
public:
|
||||
async_memset_task(void* buffer, size_t size, int32_t value, aclrtStream stream)
|
||||
: buffer_(buffer), size_(size), value_(value), stream_(stream) {}
|
||||
public:
|
||||
async_memset_task(void * buffer, size_t size, int32_t value, aclrtStream stream) :
|
||||
buffer_(buffer),
|
||||
size_(size),
|
||||
value_(value),
|
||||
stream_(stream) {}
|
||||
|
||||
virtual void run_task() override {
|
||||
ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_));
|
||||
}
|
||||
private:
|
||||
void* buffer_;
|
||||
size_t size_;
|
||||
int32_t value_;
|
||||
aclrtStream stream_;
|
||||
virtual void run_task() override { ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_)); }
|
||||
private:
|
||||
void * buffer_;
|
||||
size_t size_;
|
||||
int32_t value_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -918,25 +906,24 @@ class async_memset_task : public cann_task {
|
||||
* same stream are executed in queue order.
|
||||
*/
|
||||
|
||||
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
|
||||
do { \
|
||||
uint64_t workspaceSize = 0; \
|
||||
aclOpExecutor * executor; \
|
||||
void * workspaceAddr = nullptr; \
|
||||
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor));\
|
||||
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \
|
||||
if (workspaceSize > 0) { \
|
||||
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
|
||||
workspaceAddr = workspace_allocator.get(); \
|
||||
} \
|
||||
if (CTX.async_mode) { \
|
||||
auto task = \
|
||||
std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, \
|
||||
executor, CTX.stream()); \
|
||||
CTX.task_queue.submit_task(std::move(task)); \
|
||||
} else { \
|
||||
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream()));\
|
||||
} \
|
||||
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
|
||||
do { \
|
||||
uint64_t workspaceSize = 0; \
|
||||
aclOpExecutor * executor; \
|
||||
void * workspaceAddr = nullptr; \
|
||||
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor)); \
|
||||
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \
|
||||
if (workspaceSize > 0) { \
|
||||
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
|
||||
workspaceAddr = workspace_allocator.get(); \
|
||||
} \
|
||||
if (CTX.async_mode) { \
|
||||
auto task = \
|
||||
std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, executor, CTX.stream()); \
|
||||
CTX.task_queue.submit_task(std::move(task)); \
|
||||
} else { \
|
||||
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream())); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/**
|
||||
@@ -947,11 +934,10 @@ class async_memset_task : public cann_task {
|
||||
* @param ctx Backend context which manages task submission and async mode.
|
||||
* @param args Pointers to ACL resources to be released.
|
||||
*/
|
||||
template <typename... Args>
|
||||
void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
|
||||
template <typename... Args> void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
|
||||
std::vector<any_acl_resource> resources;
|
||||
register_acl_resources(resources, std::forward<Args>(args)...);
|
||||
if(ctx.async_mode) {
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<release_resource_task>(std::move(resources));
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
}
|
||||
@@ -966,8 +952,11 @@ void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... arg
|
||||
* @param len Size of memory to copy (in bytes).
|
||||
* @param kind Type of memory copy (host-to-device, device-to-host, etc).
|
||||
*/
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst,
|
||||
const void * src, size_t len, aclrtMemcpyKind kind) {
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx,
|
||||
void * dst,
|
||||
const void * src,
|
||||
size_t len,
|
||||
aclrtMemcpyKind kind) {
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx.stream());
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
@@ -976,8 +965,11 @@ inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst,
|
||||
}
|
||||
}
|
||||
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst,
|
||||
const void * src, size_t len, aclrtMemcpyKind kind) {
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx,
|
||||
void * dst,
|
||||
const void * src,
|
||||
size_t len,
|
||||
aclrtMemcpyKind kind) {
|
||||
if (ctx->async_mode) {
|
||||
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx->stream());
|
||||
ctx->task_queue.submit_task(std::move(task));
|
||||
@@ -994,8 +986,7 @@ inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst,
|
||||
* @param size Size of the memory buffer (in bytes).
|
||||
* @param value Value to set in the buffer.
|
||||
*/
|
||||
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer,
|
||||
size_t size, int value) {
|
||||
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer, size_t size, int value) {
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<async_memset_task>(buffer, size, value, ctx.stream());
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
@@ -1029,7 +1020,7 @@ inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffe
|
||||
* @param dst The destination tensor where the expert-weighted token outputs are stored.
|
||||
* Expected to be of shape [M, K, N, 1].
|
||||
*/
|
||||
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_mul_mat_id(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Check whether a tensor is a weight tensor for matrix multiplication.
|
||||
@@ -1041,20 +1032,14 @@ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*
|
||||
* @param tensor Pointer to the target ggml_tensor object (const-qualified).
|
||||
*/
|
||||
static bool is_matmul_weight(const ggml_tensor* tensor) {
|
||||
std::string name = ggml_get_name(tensor);
|
||||
static const std::unordered_set<std::string> weight_suffixes{
|
||||
"output.weight",
|
||||
"attn_q.weight",
|
||||
"attn_k.weight",
|
||||
"attn_v.weight",
|
||||
"attn_output.weight",
|
||||
"ffn_gate.weight",
|
||||
"ffn_up.weight",
|
||||
"ffn_down.weight"
|
||||
};
|
||||
static bool is_matmul_weight(const ggml_tensor * tensor) {
|
||||
std::string name = ggml_get_name(tensor);
|
||||
static const std::unordered_set<std::string> weight_suffixes{ "output.weight", "attn_q.weight",
|
||||
"attn_k.weight", "attn_v.weight",
|
||||
"attn_output.weight", "ffn_gate.weight",
|
||||
"ffn_up.weight", "ffn_down.weight" };
|
||||
|
||||
for (const auto& suffix : weight_suffixes) {
|
||||
for (const auto & suffix : weight_suffixes) {
|
||||
if (name.find(suffix) != std::string::npos) {
|
||||
return true;
|
||||
}
|
||||
@@ -1078,14 +1063,13 @@ static bool is_matmul_weight(const ggml_tensor* tensor) {
|
||||
* @param ctx The CANN backend context used to manage execution and resources.
|
||||
* @param dst The destination tensor.
|
||||
*/
|
||||
template <auto binary_op>
|
||||
void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src0 = dst->src[0];
|
||||
ggml_tensor* src1 = dst->src[1];
|
||||
template <auto binary_op> void ggml_cann_binary_op(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * src0 = dst->src[0];
|
||||
ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
aclTensor* acl_src0;
|
||||
aclTensor* acl_src1;
|
||||
aclTensor* acl_dst;
|
||||
aclTensor * acl_src0;
|
||||
aclTensor * acl_src1;
|
||||
aclTensor * acl_dst;
|
||||
|
||||
// Need bcast
|
||||
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst);
|
||||
@@ -1094,7 +1078,6 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Applies a unary operation to an input tensor using the CANN backend.
|
||||
*
|
||||
@@ -1107,12 +1090,12 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
* @param ctx The CANN backend context for managing resources and execution.
|
||||
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
|
||||
*/
|
||||
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
|
||||
void ggml_cann_op_unary(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
template <void unary_op(ggml_backend_cann_context &, aclTensor *, aclTensor *)>
|
||||
void ggml_cann_op_unary(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * src = dst->src[0];
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
aclTensor * acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor * acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
unary_op(ctx, acl_src, acl_dst);
|
||||
ggml_cann_release_resources(ctx, acl_src, acl_dst);
|
||||
@@ -1138,9 +1121,9 @@ template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
|
||||
*
|
||||
* @see GGML_CANN_CALL_OP_UNARY
|
||||
*/
|
||||
void ggml_cann_op_unary(
|
||||
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
|
||||
ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_op_unary(std::function<void(ggml_backend_cann_context &, aclTensor *, aclTensor *)> unary_op,
|
||||
ggml_backend_cann_context & ctx,
|
||||
ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a gated (GLU-style) unary operation using the CANN backend.
|
||||
@@ -1172,9 +1155,9 @@ void ggml_cann_op_unary(
|
||||
*
|
||||
* @see GGML_CANN_CALL_OP_UNARY_GATED
|
||||
*/
|
||||
void ggml_cann_op_unary_gated(
|
||||
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
|
||||
ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_op_unary_gated(std::function<void(ggml_backend_cann_context &, aclTensor *, aclTensor *)> unary_op,
|
||||
ggml_backend_cann_context & ctx,
|
||||
ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Helper macro to call a unary ACL operator via ggml_cann_op_unary.
|
||||
@@ -1197,16 +1180,13 @@ void ggml_cann_op_unary_gated(
|
||||
* @see ggml_cann_op_unary
|
||||
* @see GGML_CANN_CALL_ACLNN_OP
|
||||
*/
|
||||
#define GGML_CANN_CALL_OP_UNARY(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context& ctx, \
|
||||
aclTensor* acl_src, \
|
||||
aclTensor* acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_op_unary(lambda, ctx, dst); \
|
||||
} \
|
||||
while (0)
|
||||
#define GGML_CANN_CALL_OP_UNARY(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_op_unary(lambda, ctx, dst); \
|
||||
} while (0)
|
||||
|
||||
/**
|
||||
* @brief Helper macro to call a gated unary ACL operator via ggml_cann_op_unary_gated.
|
||||
@@ -1229,15 +1209,12 @@ void ggml_cann_op_unary_gated(
|
||||
* @see ggml_cann_op_unary_gated
|
||||
* @see GGML_CANN_CALL_ACLNN_OP
|
||||
*/
|
||||
#define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context& ctx, \
|
||||
aclTensor* acl_src, \
|
||||
aclTensor* acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_op_unary_gated(lambda, ctx, dst); \
|
||||
} \
|
||||
while (0)
|
||||
#define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_op_unary_gated(lambda, ctx, dst); \
|
||||
} while (0)
|
||||
|
||||
#endif // CANN_ACLNN_OPS
|
||||
|
||||
191
ggml/src/ggml-cann/common.h
Executable file → Normal file
191
ggml/src/ggml-cann/common.h
Executable file → Normal file
@@ -44,7 +44,7 @@
|
||||
#include "../include/ggml.h"
|
||||
#include "../ggml-impl.h"
|
||||
|
||||
#define MATRIX_ROW_PADDING 512
|
||||
#define MATRIX_ROW_PADDING 512
|
||||
#define GGML_CANN_MAX_STREAMS 8
|
||||
|
||||
/**
|
||||
@@ -56,8 +56,7 @@
|
||||
* @param line The line number at which the error occurred.
|
||||
* @param msg The error message.
|
||||
*/
|
||||
[[noreturn]] void ggml_cann_error(const char* stmt, const char* func,
|
||||
const char* file, int line, const char* msg);
|
||||
[[noreturn]] void ggml_cann_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
|
||||
|
||||
/**
|
||||
* @brief Checks the result of a CANN function call and invokes the error
|
||||
@@ -89,25 +88,24 @@ struct ggml_cann_device_info {
|
||||
* @brief Information about a single CANN device.
|
||||
*/
|
||||
struct cann_device_info {
|
||||
int cc; /**< Compute capability. */
|
||||
int cc; /**< Compute capability. */
|
||||
size_t smpb; /**< Maximum shared memory per block. */
|
||||
bool vmm; /**< Virtual memory support. */
|
||||
bool vmm; /**< Virtual memory support. */
|
||||
size_t vmm_granularity; /**< Granularity of virtual memory. */
|
||||
size_t total_vram; /**< Total video RAM available on the device. */
|
||||
};
|
||||
|
||||
cann_device_info devices[GGML_CANN_MAX_DEVICES] =
|
||||
{}; /**< Array of CANN device information. */
|
||||
cann_device_info devices[GGML_CANN_MAX_DEVICES] = {}; /**< Array of CANN device information. */
|
||||
};
|
||||
|
||||
const ggml_cann_device_info& ggml_cann_info();
|
||||
const ggml_cann_device_info & ggml_cann_info();
|
||||
|
||||
void ggml_cann_set_device(int32_t device);
|
||||
void ggml_cann_set_device(int32_t device);
|
||||
int32_t ggml_cann_get_device();
|
||||
|
||||
std::optional<std::string> get_env(const std::string& name);
|
||||
bool parse_bool(const std::string& value);
|
||||
int parse_integer(const std::string& value);
|
||||
std::optional<std::string> get_env(const std::string & name);
|
||||
bool parse_bool(const std::string & value);
|
||||
int parse_integer(const std::string & value);
|
||||
|
||||
/**
|
||||
* @brief Abstract base class for memory pools used by CANN.
|
||||
@@ -126,7 +124,7 @@ struct ggml_cann_pool {
|
||||
* will be stored.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
virtual void* alloc(size_t size, size_t* actual_size) = 0;
|
||||
virtual void * alloc(size_t size, size_t * actual_size) = 0;
|
||||
|
||||
/**
|
||||
* @brief Frees a previously allocated memory block.
|
||||
@@ -136,16 +134,16 @@ struct ggml_cann_pool {
|
||||
* @note Note that all CANN opertors are running async. Make sure memory is
|
||||
* still avaiable before this operator finished.
|
||||
*/
|
||||
virtual void free(void* ptr, size_t size) = 0;
|
||||
virtual void free(void * ptr, size_t size) = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief RAII wrapper for managing memory allocations from a CANN memory pool.
|
||||
*/
|
||||
struct ggml_cann_pool_alloc {
|
||||
ggml_cann_pool* pool = nullptr; /**< Pointer to the memory pool. */
|
||||
void* ptr = nullptr; /**< Pointer to the allocated memory block. */
|
||||
size_t actual_size = 0; /**< Actual size of the allocated memory block. */
|
||||
ggml_cann_pool * pool = nullptr; /**< Pointer to the memory pool. */
|
||||
void * ptr = nullptr; /**< Pointer to the allocated memory block. */
|
||||
size_t actual_size = 0; /**< Actual size of the allocated memory block. */
|
||||
|
||||
/**
|
||||
* @brief Default constructor.
|
||||
@@ -156,16 +154,14 @@ struct ggml_cann_pool_alloc {
|
||||
* @brief Constructor that initializes the memory pool.
|
||||
* @param pool Reference to the memory pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_alloc(ggml_cann_pool& pool) : pool(&pool) {}
|
||||
explicit ggml_cann_pool_alloc(ggml_cann_pool & pool) : pool(&pool) {}
|
||||
|
||||
/**
|
||||
* @brief Constructor that initializes the memory pool and allocates memory.
|
||||
* @param pool Reference to the memory pool.
|
||||
* @param size Size of the memory block to allocate.
|
||||
*/
|
||||
ggml_cann_pool_alloc(ggml_cann_pool& pool, size_t size) : pool(&pool) {
|
||||
alloc(size);
|
||||
}
|
||||
ggml_cann_pool_alloc(ggml_cann_pool & pool, size_t size) : pool(&pool) { alloc(size); }
|
||||
|
||||
/**
|
||||
* @brief Destructor that frees the allocated memory block.
|
||||
@@ -181,7 +177,7 @@ struct ggml_cann_pool_alloc {
|
||||
* @param size Size of the memory block to allocate.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
void* alloc(size_t size) {
|
||||
void * alloc(size_t size) {
|
||||
GGML_ASSERT(pool != nullptr);
|
||||
GGML_ASSERT(ptr == nullptr);
|
||||
ptr = pool->alloc(size, &this->actual_size);
|
||||
@@ -194,7 +190,7 @@ struct ggml_cann_pool_alloc {
|
||||
* @param size Size of the memory block to allocate.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
void* alloc(ggml_cann_pool& pool, size_t size) {
|
||||
void * alloc(ggml_cann_pool & pool, size_t size) {
|
||||
this->pool = &pool;
|
||||
return alloc(size);
|
||||
}
|
||||
@@ -203,25 +199,25 @@ struct ggml_cann_pool_alloc {
|
||||
* @brief Gets the pointer to the allocated memory block.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
void* get() { return ptr; }
|
||||
void * get() { return ptr; }
|
||||
|
||||
// Deleted copy constructor
|
||||
ggml_cann_pool_alloc(const ggml_cann_pool_alloc&) = delete;
|
||||
ggml_cann_pool_alloc(const ggml_cann_pool_alloc &) = delete;
|
||||
|
||||
// Deleted move constructor
|
||||
ggml_cann_pool_alloc(ggml_cann_pool_alloc&&) = delete;
|
||||
ggml_cann_pool_alloc(ggml_cann_pool_alloc &&) = delete;
|
||||
|
||||
// Deleted copy assignment operator
|
||||
ggml_cann_pool_alloc& operator=(const ggml_cann_pool_alloc&) = delete;
|
||||
ggml_cann_pool_alloc & operator=(const ggml_cann_pool_alloc &) = delete;
|
||||
|
||||
// Deleted move assignment operator
|
||||
ggml_cann_pool_alloc& operator=(ggml_cann_pool_alloc&&) = delete;
|
||||
ggml_cann_pool_alloc & operator=(ggml_cann_pool_alloc &&) = delete;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Function pointer type for ACLNN operator calls.
|
||||
*/
|
||||
using aclnn_func_t = aclnnStatus (*)(void*, uint64_t, aclOpExecutor*, aclrtStream);
|
||||
using aclnn_func_t = aclnnStatus (*)(void *, uint64_t, aclOpExecutor *, aclrtStream);
|
||||
|
||||
/**
|
||||
* @brief Base class for all CANN tasks to be submitted to the task queue.
|
||||
@@ -229,7 +225,7 @@ using aclnn_func_t = aclnnStatus (*)(void*, uint64_t, aclOpExecutor*, aclrtStrea
|
||||
* Users should override the run_task() method with actual task logic.
|
||||
*/
|
||||
class cann_task {
|
||||
public:
|
||||
public:
|
||||
virtual void run_task() {}
|
||||
};
|
||||
|
||||
@@ -237,16 +233,20 @@ public:
|
||||
* @brief A lock-free ring-buffer based task queue for asynchronously executing cann_task instances.
|
||||
*/
|
||||
class cann_task_queue {
|
||||
public:
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs a task queue with a fixed power-of-two capacity for a specific device.
|
||||
*
|
||||
* @param capacity Queue capacity. Must be a power of 2.
|
||||
* @param device Target device ID (used for context setting).
|
||||
*/
|
||||
explicit cann_task_queue(size_t capacity, int32_t device)
|
||||
: buffer_(capacity), capacity_(capacity), head_(0), tail_(0),
|
||||
running_(false), device_(device) {
|
||||
explicit cann_task_queue(size_t capacity, int32_t device) :
|
||||
buffer_(capacity),
|
||||
capacity_(capacity),
|
||||
head_(0),
|
||||
tail_(0),
|
||||
running_(false),
|
||||
device_(device) {
|
||||
GGML_ASSERT((capacity & (capacity - 1)) == 0 && "capacity must be power of 2");
|
||||
mask_ = capacity_ - 1;
|
||||
}
|
||||
@@ -257,7 +257,7 @@ public:
|
||||
* @param item Unique pointer to the task.
|
||||
* @return true if the task was successfully enqueued, false if the queue was full.
|
||||
*/
|
||||
bool enqueue(std::unique_ptr<cann_task>&& item) {
|
||||
bool enqueue(std::unique_ptr<cann_task> && item) {
|
||||
size_t next_tail = (tail_ + 1) & mask_;
|
||||
|
||||
if (next_tail == head_) {
|
||||
@@ -276,17 +276,16 @@ public:
|
||||
*
|
||||
* @param task Task to be submitted.
|
||||
*/
|
||||
void submit_task(std::unique_ptr<cann_task>&& task) {
|
||||
while(!enqueue(std::move(task))) {
|
||||
void submit_task(std::unique_ptr<cann_task> && task) {
|
||||
while (!enqueue(std::move(task))) {
|
||||
std::this_thread::yield();
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!running_) {
|
||||
running_ = true;
|
||||
thread_ = std::thread(&cann_task_queue::execute, this);
|
||||
thread_ = std::thread(&cann_task_queue::execute, this);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -309,7 +308,7 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
private:
|
||||
/**
|
||||
* @brief Worker thread function that continuously dequeues and executes tasks.
|
||||
*/
|
||||
@@ -317,7 +316,7 @@ private:
|
||||
ggml_cann_set_device(device_);
|
||||
|
||||
while (running_) {
|
||||
if(head_ == tail_) {
|
||||
if (head_ == tail_) {
|
||||
std::this_thread::yield();
|
||||
continue;
|
||||
}
|
||||
@@ -330,24 +329,24 @@ private:
|
||||
}
|
||||
|
||||
std::vector<std::unique_ptr<cann_task>> buffer_;
|
||||
const size_t capacity_;
|
||||
size_t mask_;
|
||||
size_t head_;
|
||||
size_t tail_;
|
||||
bool running_;
|
||||
std::thread thread_;
|
||||
int32_t device_;
|
||||
const size_t capacity_;
|
||||
size_t mask_;
|
||||
size_t head_;
|
||||
size_t tail_;
|
||||
bool running_;
|
||||
std::thread thread_;
|
||||
int32_t device_;
|
||||
};
|
||||
|
||||
#ifdef USE_ACL_GRAPH
|
||||
struct ggml_graph_node_properties {
|
||||
// dst tensor
|
||||
void * node_address;
|
||||
void * node_address;
|
||||
int64_t ne[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS];
|
||||
|
||||
// src tensor
|
||||
void * src_address[GGML_MAX_SRC];
|
||||
void * src_address[GGML_MAX_SRC];
|
||||
int64_t src_ne[GGML_MAX_SRC][GGML_MAX_DIMS];
|
||||
size_t src_nb[GGML_MAX_SRC][GGML_MAX_DIMS];
|
||||
|
||||
@@ -376,13 +375,11 @@ struct ggml_cann_graph {
|
||||
* move existing graphs to the front (most recently used), and clear the cache.
|
||||
*/
|
||||
struct ggml_cann_graph_lru_cache {
|
||||
size_t capacity; /**< Maximum number of graphs in the cache. */
|
||||
size_t capacity; /**< Maximum number of graphs in the cache. */
|
||||
|
||||
std::list<ggml_cann_graph*> cache_list; /**< List storing cached graphs as raw pointers. */
|
||||
std::list<ggml_cann_graph *> cache_list; /**< List storing cached graphs as raw pointers. */
|
||||
|
||||
ggml_cann_graph_lru_cache() {
|
||||
capacity = parse_integer(get_env("GGML_CANN_GRAPH_CACHE_CAPACITY").value_or("12"));
|
||||
}
|
||||
ggml_cann_graph_lru_cache() { capacity = parse_integer(get_env("GGML_CANN_GRAPH_CACHE_CAPACITY").value_or("12")); }
|
||||
|
||||
/**
|
||||
* @brief Push a new graph to the front of the cache.
|
||||
@@ -390,11 +387,11 @@ struct ggml_cann_graph_lru_cache {
|
||||
* @param new_node Pointer to the new ggml_cann_graph to cache.
|
||||
* Ownership is transferred to the cache (cache will delete it).
|
||||
*/
|
||||
void push(ggml_cann_graph* new_node) {
|
||||
void push(ggml_cann_graph * new_node) {
|
||||
if (cache_list.size() >= capacity) {
|
||||
ggml_cann_graph* old = cache_list.back();
|
||||
ggml_cann_graph * old = cache_list.back();
|
||||
cache_list.pop_back();
|
||||
delete old; // free the old graph
|
||||
delete old; // free the old graph
|
||||
}
|
||||
cache_list.push_front(new_node);
|
||||
}
|
||||
@@ -403,7 +400,7 @@ struct ggml_cann_graph_lru_cache {
|
||||
* @brief Move an existing graph to the front of the cache.
|
||||
* @param node Pointer to the ggml_cann_graph to move.
|
||||
*/
|
||||
void move_to_front(ggml_cann_graph* node) {
|
||||
void move_to_front(ggml_cann_graph * node) {
|
||||
cache_list.remove(node);
|
||||
cache_list.push_front(node);
|
||||
}
|
||||
@@ -421,92 +418,89 @@ struct ggml_cann_graph_lru_cache {
|
||||
/**
|
||||
* @brief Destructor that clears the cache and frees all cached graphs.
|
||||
*/
|
||||
~ggml_cann_graph_lru_cache() {
|
||||
clear();
|
||||
}
|
||||
~ggml_cann_graph_lru_cache() { clear(); }
|
||||
};
|
||||
#endif // USE_ACL_GRAPH
|
||||
|
||||
struct ggml_cann_rope_cache {
|
||||
~ggml_cann_rope_cache() {
|
||||
if(theta_scale_cache != nullptr) {
|
||||
if (theta_scale_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(theta_scale_cache));
|
||||
}
|
||||
if(sin_cache != nullptr) {
|
||||
if (sin_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(sin_cache));
|
||||
}
|
||||
if(cos_cache != nullptr) {
|
||||
if (cos_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(cos_cache));
|
||||
}
|
||||
}
|
||||
|
||||
void* theta_scale_cache = nullptr;
|
||||
void * theta_scale_cache = nullptr;
|
||||
int64_t theta_scale_length = 0;
|
||||
// sin/cos cache, used only to accelerate first layer on each device
|
||||
void* sin_cache = nullptr;
|
||||
void* cos_cache = nullptr;
|
||||
int64_t position_length = 0;
|
||||
void * sin_cache = nullptr;
|
||||
void * cos_cache = nullptr;
|
||||
int64_t position_length = 0;
|
||||
// Properties to check before reusing the sincos cache
|
||||
bool cached = false;
|
||||
float ext_factor = 0.0f;
|
||||
float theta_scale = 0.0f;
|
||||
float freq_scale = 0.0f;
|
||||
float attn_factor = 0.0f;
|
||||
bool is_neox = false;
|
||||
bool cached = false;
|
||||
float ext_factor = 0.0f;
|
||||
float theta_scale = 0.0f;
|
||||
float freq_scale = 0.0f;
|
||||
float attn_factor = 0.0f;
|
||||
bool is_neox = false;
|
||||
};
|
||||
|
||||
struct ggml_cann_tensor_cache {
|
||||
~ggml_cann_tensor_cache() {
|
||||
if(cache != nullptr) {
|
||||
if (cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(cache));
|
||||
}
|
||||
}
|
||||
|
||||
void* cache = nullptr;
|
||||
int64_t size = 0;
|
||||
void * cache = nullptr;
|
||||
int64_t size = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Context for managing CANN backend operations.
|
||||
*/
|
||||
struct ggml_backend_cann_context {
|
||||
int32_t device; /**< Device ID. */
|
||||
std::string name; /**< Name of the device. */
|
||||
std::string description; /**< Description of the device. */
|
||||
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
|
||||
int32_t device; /**< Device ID. */
|
||||
std::string name; /**< Name of the device. */
|
||||
std::string description; /**< Description of the device. */
|
||||
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
|
||||
#ifdef USE_ACL_GRAPH
|
||||
/// Cached CANN ACL graph used for executing the current ggml computation graph.
|
||||
ggml_cann_graph_lru_cache graph_lru_cache;
|
||||
bool acl_graph_mode = true;
|
||||
bool acl_graph_mode = true;
|
||||
#endif
|
||||
cann_task_queue task_queue;
|
||||
bool async_mode;
|
||||
cann_task_queue task_queue;
|
||||
bool async_mode;
|
||||
// Rope Cache
|
||||
ggml_cann_rope_cache rope_cache;
|
||||
ggml_cann_rope_cache rope_cache;
|
||||
// Constant Pool
|
||||
ggml_cann_tensor_cache rms_norm_one_tensor_cache;
|
||||
ggml_cann_tensor_cache rms_norm_zero_tensor_cache;
|
||||
|
||||
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
|
||||
aclrtStream streams[GGML_CANN_MAX_STREAMS] = { nullptr }; /**< Array of streams for the device. */
|
||||
|
||||
/**
|
||||
* @brief Constructor for initializing the context with a given device.
|
||||
* @param device Device ID.
|
||||
*/
|
||||
explicit ggml_backend_cann_context(int device)
|
||||
: device(device), name("CANN" + std::to_string(device)), task_queue(1024, device) {
|
||||
explicit ggml_backend_cann_context(int device) :
|
||||
device(device),
|
||||
name("CANN" + std::to_string(device)),
|
||||
task_queue(1024, device) {
|
||||
ggml_cann_set_device(device);
|
||||
description = aclrtGetSocName();
|
||||
|
||||
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
|
||||
device, async_mode ? "ON" : "OFF");
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__, device, async_mode ? "ON" : "OFF");
|
||||
#ifdef USE_ACL_GRAPH
|
||||
acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on"));
|
||||
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n",
|
||||
__func__, device,
|
||||
acl_graph_mode ? "GRAPH" : "EAGER",
|
||||
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
|
||||
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n", __func__, device, acl_graph_mode ? "GRAPH" : "EAGER",
|
||||
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -549,8 +543,7 @@ struct ggml_backend_cann_context {
|
||||
aclrtStream stream() { return stream(0); }
|
||||
|
||||
// TODO: each stream should have a memory pool.
|
||||
std::unique_ptr<ggml_cann_pool>
|
||||
mem_pool; /**< Memory pool for the device. */
|
||||
std::unique_ptr<ggml_cann_pool> mem_pool; /**< Memory pool for the device. */
|
||||
|
||||
/**
|
||||
* @brief Create a new memory pool for a given device.
|
||||
@@ -563,7 +556,7 @@ struct ggml_backend_cann_context {
|
||||
* @brief Get or create the memory pool for the context.
|
||||
* @return Reference to the memory pool.
|
||||
*/
|
||||
ggml_cann_pool& pool() {
|
||||
ggml_cann_pool & pool() {
|
||||
if (mem_pool == nullptr) {
|
||||
mem_pool = new_pool_for_device(device);
|
||||
}
|
||||
|
||||
1109
ggml/src/ggml-cann/ggml-cann.cpp
Executable file → Normal file
1109
ggml/src/ggml-cann/ggml-cann.cpp
Executable file → Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user