kv-cache : use ggml_set_rows

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-06-19 19:26:47 +03:00
parent 1f647b5992
commit 79dac3c861
4 changed files with 89 additions and 18 deletions

View File

@@ -746,13 +746,17 @@ ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint
0);
}
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il, uint32_t head_cur) const {
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * kv_idxs, int32_t il, uint32_t head_cur) const {
const int32_t ikv = map_layer_ids.at(il);
auto * k = layers[ikv].k;
const int64_t n_tokens = k_cur->ne[2];
if (kv_idxs) {
return ggml_set_rows(ctx, k, ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens), kv_idxs);
}
ggml_tensor * k_view = ggml_view_1d(ctx, k,
n_tokens*hparams.n_embd_k_gqa(il),
ggml_row_size(k->type, hparams.n_embd_k_gqa(il))*head_cur);
@@ -760,7 +764,7 @@ ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_
return ggml_cpy(ctx, k_cur, k_view);
}
ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il, uint32_t head_cur) const {
ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * kv_idxs, int32_t il, uint32_t head_cur) const {
const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v;
@@ -772,21 +776,48 @@ ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_
ggml_tensor * v_view = nullptr;
if (!v_trans) {
if (kv_idxs) {
return ggml_set_rows(ctx, v, v_cur, kv_idxs);
}
v_view = ggml_view_1d(ctx, v,
n_tokens*hparams.n_embd_v_gqa(il),
ggml_row_size(v->type, hparams.n_embd_v_gqa(il))*head_cur);
} else {
v_cur = ggml_transpose(ctx, v_cur);
// note: the V cache is transposed when not using flash attention
if (kv_idxs) {
// the row becomes a single element and we repeat the KV indices d_head times
// TODO: this seems not very optimal - can we do something better?
v_view = ggml_reshape_3d(ctx, v, 1, v->ne[1], v->ne[0]);
v_cur = ggml_cont_3d(ctx, v_cur, 1, v_cur->ne[0], v_cur->ne[1]);
kv_idxs = ggml_repeat_4d(ctx, kv_idxs, v_cur->ne[1], v_cur->ne[2], 1, 1);
return ggml_set_rows(ctx, v_view, v_cur, kv_idxs);
}
v_view = ggml_view_2d(ctx, v, n_tokens, hparams.n_embd_v_gqa(il),
(v->ne[1])*ggml_element_size(v),
(head_cur)*ggml_element_size(v));
v_cur = ggml_transpose(ctx, v_cur);
}
return ggml_cpy(ctx, v_cur, v_view);
}
void llama_kv_cache_unified::set_input_kv_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, uint32_t head_cur) const {
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int64_t * data = (int64_t *) dst->data;
for (int64_t i = 0; i < n_tokens; ++i) {
data[i] = head_cur + i;
}
}
void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
const uint32_t n_tokens = ubatch->n_tokens;
@@ -1789,18 +1820,22 @@ ggml_tensor * llama_kv_cache_unified_context::get_v(ggml_context * ctx, int32_t
return kv->get_v(ctx, il, n_kv);
}
ggml_tensor * llama_kv_cache_unified_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const {
return kv->cpy_k(ctx, k_cur, il, head);
ggml_tensor * llama_kv_cache_unified_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * kv_idxs, int32_t il) const {
return kv->cpy_k(ctx, k_cur, kv_idxs, il, head);
}
ggml_tensor * llama_kv_cache_unified_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const {
return kv->cpy_v(ctx, v_cur, il, head);
ggml_tensor * llama_kv_cache_unified_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * kv_idxs, int32_t il) const {
return kv->cpy_v(ctx, v_cur, kv_idxs, il, head);
}
void llama_kv_cache_unified_context::set_input_k_shift(ggml_tensor * dst) const {
kv->set_input_k_shift(dst);
}
void llama_kv_cache_unified_context::set_input_kv_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_kv_idxs(dst, ubatch, head);
}
void llama_kv_cache_unified_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
kv->set_input_kq_mask(dst, ubatch, causal_attn);
}