mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-02 09:12:03 +00:00
Merge branch 'master' into compilade/bitnet-ternary
This commit is contained in:
@@ -4,7 +4,89 @@ You can also use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-
|
||||
|
||||
Note: It is synced from llama.cpp `main` every 6 hours.
|
||||
|
||||
## Llama 2 7B
|
||||
Example usage:
|
||||
|
||||
```bash
|
||||
# obtain the official LLaMA model weights and place them in ./models
|
||||
ls ./models
|
||||
llama-2-7b tokenizer_checklist.chk tokenizer.model
|
||||
# [Optional] for models using BPE tokenizers
|
||||
ls ./models
|
||||
<folder containing weights and tokenizer json> vocab.json
|
||||
# [Optional] for PyTorch .bin models like Mistral-7B
|
||||
ls ./models
|
||||
<folder containing weights and tokenizer json>
|
||||
|
||||
# install Python dependencies
|
||||
python3 -m pip install -r requirements.txt
|
||||
|
||||
# convert the model to ggml FP16 format
|
||||
python3 convert_hf_to_gguf.py models/mymodel/
|
||||
|
||||
# quantize the model to 4-bits (using Q4_K_M method)
|
||||
./llama-quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
|
||||
# update the gguf filetype to current version if older version is now unsupported
|
||||
./llama-quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY
|
||||
```
|
||||
|
||||
Run the quantized model:
|
||||
|
||||
```bash
|
||||
# start inference on a gguf model
|
||||
./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
|
||||
```
|
||||
|
||||
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
||||
|
||||
## Memory/Disk Requirements
|
||||
|
||||
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
|
||||
|
||||
| Model | Original size | Quantized size (Q4_0) |
|
||||
|------:|--------------:|----------------------:|
|
||||
| 7B | 13 GB | 3.9 GB |
|
||||
| 13B | 24 GB | 7.8 GB |
|
||||
| 30B | 60 GB | 19.5 GB |
|
||||
| 65B | 120 GB | 38.5 GB |
|
||||
|
||||
## Quantization
|
||||
|
||||
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
|
||||
|
||||
*(outdated)*
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|
||||
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
|
||||
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
|
||||
| 7B | file size | 13.0G | 3.5G | 3.9G | 4.3G | 4.7G | 6.7G |
|
||||
| 7B | ms/tok @ 4th | 127 | 55 | 54 | 76 | 83 | 72 |
|
||||
| 7B | ms/tok @ 8th | 122 | 43 | 45 | 52 | 56 | 67 |
|
||||
| 7B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||
| 13B | perplexity | 5.2543 | 5.3860 | 5.3608 | 5.2856 | 5.2706 | 5.2548 |
|
||||
| 13B | file size | 25.0G | 6.8G | 7.6G | 8.3G | 9.1G | 13G |
|
||||
| 13B | ms/tok @ 4th | - | 103 | 105 | 148 | 160 | 131 |
|
||||
| 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
|
||||
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||
|
||||
- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
|
||||
- recent k-quants improvements and new i-quants
|
||||
- [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
|
||||
- [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
|
||||
- [#4773 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4773)
|
||||
- [#4856 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4856)
|
||||
- [#4861 - importance matrix](https://github.com/ggerganov/llama.cpp/pull/4861)
|
||||
- [#4872 - MoE models](https://github.com/ggerganov/llama.cpp/pull/4872)
|
||||
- [#4897 - 2-bit quantization](https://github.com/ggerganov/llama.cpp/pull/4897)
|
||||
- [#4930 - imatrix for all k-quants](https://github.com/ggerganov/llama.cpp/pull/4930)
|
||||
- [#4951 - imatrix on the GPU](https://github.com/ggerganov/llama.cpp/pull/4957)
|
||||
- [#4969 - imatrix for legacy quants](https://github.com/ggerganov/llama.cpp/pull/4969)
|
||||
- [#4996 - k-qunats tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
|
||||
- [#5060 - Q3_K_XS](https://github.com/ggerganov/llama.cpp/pull/5060)
|
||||
- [#5196 - 3-bit i-quants](https://github.com/ggerganov/llama.cpp/pull/5196)
|
||||
- [quantization tuning](https://github.com/ggerganov/llama.cpp/pull/5320), [another one](https://github.com/ggerganov/llama.cpp/pull/5334), and [another one](https://github.com/ggerganov/llama.cpp/pull/5361)
|
||||
|
||||
**Llama 2 7B**
|
||||
|
||||
| Quantization | Bits per Weight (BPW) |
|
||||
|--------------|-----------------------|
|
||||
@@ -18,7 +100,8 @@ Note: It is synced from llama.cpp `main` every 6 hours.
|
||||
| Q5_K_M | 5.68 |
|
||||
| Q6_K | 6.56 |
|
||||
|
||||
## Llama 2 13B
|
||||
**Llama 2 13B**
|
||||
|
||||
Quantization | Bits per Weight (BPW)
|
||||
-- | --
|
||||
Q2_K | 3.34
|
||||
@@ -31,7 +114,7 @@ Q5_K_S | 5.51
|
||||
Q5_K_M | 5.67
|
||||
Q6_K | 6.56
|
||||
|
||||
# Llama 2 70B
|
||||
**Llama 2 70B**
|
||||
|
||||
Quantization | Bits per Weight (BPW)
|
||||
-- | --
|
||||
|
||||
@@ -16,43 +16,46 @@ struct quant_option {
|
||||
};
|
||||
|
||||
static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
|
||||
{ "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
||||
{ "Q1_3", LLAMA_FTYPE_MOSTLY_Q1_3, " 1.63 bpw for BitNet b1.58", },
|
||||
{ "Q2_2", LLAMA_FTYPE_MOSTLY_Q2_2, " 2.00 bpw for BitNet b1.58", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
|
||||
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
|
||||
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
|
||||
{ "IQ2_XXS", LLAMA_FTYPE_MOSTLY_IQ2_XXS, " 2.06 bpw quantization", },
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
||||
{ "Q1_3", LLAMA_FTYPE_MOSTLY_Q1_3, " 1.63 bpw for BitNet b1.58", },
|
||||
{ "Q2_2", LLAMA_FTYPE_MOSTLY_Q2_2, " 2.00 bpw for BitNet b1.58", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
|
||||
{ "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },
|
||||
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
|
||||
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
|
||||
{ "Q4_0_4_4", LLAMA_FTYPE_MOSTLY_Q4_0_4_4, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_0_4_8", LLAMA_FTYPE_MOSTLY_Q4_0_4_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_0_8_8", LLAMA_FTYPE_MOSTLY_Q4_0_8_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
|
||||
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
};
|
||||
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
|
||||
|
||||
Reference in New Issue
Block a user