mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	update guide
This commit is contained in:
		@@ -80,7 +80,14 @@ The following release is verified with good quality:
 | 
			
		||||
 | 
			
		||||
### Intel GPU
 | 
			
		||||
 | 
			
		||||
**Verified devices**
 | 
			
		||||
SYCL backend supports Intel GPU Family:
 | 
			
		||||
 | 
			
		||||
- Intel Data Center Max Series
 | 
			
		||||
- Intel Flex Series, Arc Series
 | 
			
		||||
- Intel Built-in Arc GPU
 | 
			
		||||
- Intel iGPU in Core CPU (11th Generation Core CPU and newer, refer to [oneAPI supported GPU](https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html#inpage-nav-1-1)).
 | 
			
		||||
 | 
			
		||||
#### Verified devices
 | 
			
		||||
 | 
			
		||||
| Intel GPU                     | Status  | Verified Model                        |
 | 
			
		||||
|-------------------------------|---------|---------------------------------------|
 | 
			
		||||
@@ -88,7 +95,7 @@ The following release is verified with good quality:
 | 
			
		||||
| Intel Data Center Flex Series | Support | Flex 170                              |
 | 
			
		||||
| Intel Arc Series              | Support | Arc 770, 730M, Arc A750               |
 | 
			
		||||
| Intel built-in Arc GPU        | Support | built-in Arc GPU in Meteor Lake       |
 | 
			
		||||
| Intel iGPU                    | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
 | 
			
		||||
| Intel iGPU                    | Support | iGPU in 13700k, i5-1250P, i7-1260P, i7-1165G7 |
 | 
			
		||||
 | 
			
		||||
*Notes:*
 | 
			
		||||
 | 
			
		||||
@@ -237,6 +244,13 @@ Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA devic
 | 
			
		||||
### II. Build llama.cpp
 | 
			
		||||
 | 
			
		||||
#### Intel GPU
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
./examples/sycl/build.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
or
 | 
			
		||||
 | 
			
		||||
```sh
 | 
			
		||||
# Export relevant ENV variables
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
@@ -276,23 +290,26 @@ cmake --build build --config Release -j -v
 | 
			
		||||
 | 
			
		||||
### III. Run the inference
 | 
			
		||||
 | 
			
		||||
1. Retrieve and prepare model
 | 
			
		||||
#### Retrieve and prepare model
 | 
			
		||||
 | 
			
		||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
 | 
			
		||||
 | 
			
		||||
2. Enable oneAPI running environment
 | 
			
		||||
##### Check device
 | 
			
		||||
 | 
			
		||||
1. Enable oneAPI running environment
 | 
			
		||||
 | 
			
		||||
```sh
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
3. List devices information
 | 
			
		||||
2. List devices information
 | 
			
		||||
 | 
			
		||||
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
 | 
			
		||||
 | 
			
		||||
```sh
 | 
			
		||||
./build/bin/llama-ls-sycl-device
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
 | 
			
		||||
```
 | 
			
		||||
found 2 SYCL devices:
 | 
			
		||||
@@ -304,12 +321,37 @@ found 2 SYCL devices:
 | 
			
		||||
| 1|[level_zero:gpu:1]|                    Intel(R) UHD Graphics 770|       1.3|         32|     512|     32|    53651849216|
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Choose level-zero devices
 | 
			
		||||
 | 
			
		||||
4. Launch inference
 | 
			
		||||
|Chosen Device ID|Setting|
 | 
			
		||||
|-|-|
 | 
			
		||||
|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action|
 | 
			
		||||
|1|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
 | 
			
		||||
|0 & 1|`export ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|
 | 
			
		||||
 | 
			
		||||
#### Execute
 | 
			
		||||
 | 
			
		||||
Choose one of following methods to run.
 | 
			
		||||
 | 
			
		||||
1. Script
 | 
			
		||||
 | 
			
		||||
- Use device 0:
 | 
			
		||||
 | 
			
		||||
```sh
 | 
			
		||||
./examples/sycl/run_llama2.sh 0
 | 
			
		||||
```
 | 
			
		||||
- Use multiple devices:
 | 
			
		||||
 | 
			
		||||
```sh
 | 
			
		||||
./examples/sycl/run_llama2.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
2. Command line
 | 
			
		||||
Launch inference
 | 
			
		||||
 | 
			
		||||
There are two device selection modes:
 | 
			
		||||
 | 
			
		||||
- Single device: Use one device target specified by the user.
 | 
			
		||||
- Single device: Use one device assigned by user. Default device id is 0.
 | 
			
		||||
- Multiple devices: Automatically choose the devices with the same backend.
 | 
			
		||||
 | 
			
		||||
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
 | 
			
		||||
@@ -326,11 +368,6 @@ Examples:
 | 
			
		||||
```sh
 | 
			
		||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
 | 
			
		||||
```
 | 
			
		||||
or run by script:
 | 
			
		||||
 | 
			
		||||
```sh
 | 
			
		||||
./examples/sycl/run_llama2.sh 0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
- Use multiple devices:
 | 
			
		||||
 | 
			
		||||
@@ -338,12 +375,6 @@ or run by script:
 | 
			
		||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Otherwise, you can run the script:
 | 
			
		||||
 | 
			
		||||
```sh
 | 
			
		||||
./examples/sycl/run_llama2.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
*Notes:*
 | 
			
		||||
 | 
			
		||||
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
 | 
			
		||||
@@ -390,7 +421,7 @@ c. Verify installation
 | 
			
		||||
In the oneAPI command line, run the following to print the available SYCL devices:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
sycl-ls
 | 
			
		||||
sycl-ls.exe
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:
 | 
			
		||||
@@ -411,6 +442,18 @@ b. The new Visual Studio will install Ninja as default. (If not, please install
 | 
			
		||||
 | 
			
		||||
### II. Build llama.cpp
 | 
			
		||||
 | 
			
		||||
You could download the release package for Windows directly, which including binary files and depended oneAPI dll files.
 | 
			
		||||
 | 
			
		||||
Choose one of following methods to build from source code.
 | 
			
		||||
 | 
			
		||||
1. Script
 | 
			
		||||
 | 
			
		||||
```sh
 | 
			
		||||
.\examples\sycl\win-build-sycl.bat
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
2. CMake
 | 
			
		||||
 | 
			
		||||
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
@@ -425,12 +468,8 @@ cmake -B build -G "Ninja" -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPI
 | 
			
		||||
cmake --build build --config Release -j
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions:
 | 
			
		||||
```sh
 | 
			
		||||
.\examples\sycl\win-build-sycl.bat
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Or, use CMake presets to build:
 | 
			
		||||
 | 
			
		||||
```sh
 | 
			
		||||
cmake --preset x64-windows-sycl-release
 | 
			
		||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
 | 
			
		||||
@@ -442,7 +481,9 @@ cmake --preset x64-windows-sycl-debug
 | 
			
		||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
 | 
			
		||||
3. Visual Studio
 | 
			
		||||
 | 
			
		||||
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
 | 
			
		||||
 | 
			
		||||
*Notes:*
 | 
			
		||||
 | 
			
		||||
@@ -450,23 +491,25 @@ Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choos
 | 
			
		||||
 | 
			
		||||
### III. Run the inference
 | 
			
		||||
 | 
			
		||||
1. Retrieve and prepare model
 | 
			
		||||
#### Retrieve and prepare model
 | 
			
		||||
 | 
			
		||||
You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
 | 
			
		||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
 | 
			
		||||
 | 
			
		||||
2. Enable oneAPI running environment
 | 
			
		||||
##### Check device
 | 
			
		||||
 | 
			
		||||
1. Enable oneAPI running environment
 | 
			
		||||
 | 
			
		||||
On the oneAPI command line window, run the following and step into the llama.cpp directory:
 | 
			
		||||
```
 | 
			
		||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
3. List devices information
 | 
			
		||||
2. List devices information
 | 
			
		||||
 | 
			
		||||
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
build\bin\ls-sycl-device.exe
 | 
			
		||||
build\bin\llama-ls-sycl-device.exe
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
 | 
			
		||||
@@ -479,9 +522,27 @@ found 2 SYCL devices:
 | 
			
		||||
| 1|[level_zero:gpu:1]|                    Intel(R) UHD Graphics 770|       1.3|         32|     512|     32|    53651849216|
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
#### Choose level-zero devices
 | 
			
		||||
 | 
			
		||||
|Chosen Device ID|Setting|
 | 
			
		||||
|-|-|
 | 
			
		||||
|0|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action|
 | 
			
		||||
|1|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
 | 
			
		||||
|0 & 1|`set ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|
 | 
			
		||||
 | 
			
		||||
4. Launch inference
 | 
			
		||||
#### Execute
 | 
			
		||||
 | 
			
		||||
Choose one of following methods to run.
 | 
			
		||||
 | 
			
		||||
1. Script
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
examples\sycl\win-run-llama2.bat
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
2. Command line
 | 
			
		||||
 | 
			
		||||
Launch inference
 | 
			
		||||
 | 
			
		||||
There are two device selection modes:
 | 
			
		||||
 | 
			
		||||
@@ -508,11 +569,7 @@ build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website ca
 | 
			
		||||
```
 | 
			
		||||
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
 | 
			
		||||
```
 | 
			
		||||
Otherwise, run the following wrapper script:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
.\examples\sycl\win-run-llama2.bat
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Note:
 | 
			
		||||
 | 
			
		||||
@@ -526,17 +583,18 @@ Or
 | 
			
		||||
use 1 SYCL GPUs: [0] with Max compute units:512
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Environment Variable
 | 
			
		||||
 | 
			
		||||
#### Build
 | 
			
		||||
 | 
			
		||||
| Name               | Value                             | Function                                    |
 | 
			
		||||
|--------------------|-----------------------------------|---------------------------------------------|
 | 
			
		||||
| GGML_SYCL          | ON (mandatory)                    | Enable build with SYCL code path.           |
 | 
			
		||||
| GGML_SYCL          | ON (mandatory)                    | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
 | 
			
		||||
| GGML_SYCL_TARGET   | INTEL *(default)* \| NVIDIA       | Set the SYCL target device type.            |
 | 
			
		||||
| GGML_SYCL_F16      | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path.      |
 | 
			
		||||
| CMAKE_C_COMPILER   | icx                               | Set *icx* compiler for SYCL code path.      |
 | 
			
		||||
| CMAKE_CXX_COMPILER | icpx *(Linux)*, icx *(Windows)*   | Set `icpx/icx` compiler for SYCL code path. |
 | 
			
		||||
| CMAKE_C_COMPILER   | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path.      |
 | 
			
		||||
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)*   | Set `icpx/icx` compiler for SYCL code path. |
 | 
			
		||||
 | 
			
		||||
#### Runtime
 | 
			
		||||
 | 
			
		||||
@@ -572,9 +630,18 @@ use 1 SYCL GPUs: [0] with Max compute units:512
 | 
			
		||||
  ```
 | 
			
		||||
  Otherwise, please double-check the GPU driver installation steps.
 | 
			
		||||
 | 
			
		||||
- Can I report Ollama issue on Intel GPU to llama.cpp SYCL backend?
 | 
			
		||||
 | 
			
		||||
  No. We can't support Ollama issue directly, because we aren't familiar with Ollama.
 | 
			
		||||
 | 
			
		||||
  Sugguest reproducing on llama.cpp and report similar issue to llama.cpp. We will surpport it.
 | 
			
		||||
 | 
			
		||||
  It's same for other projects including llama.cpp SYCL backend.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
### **GitHub contribution**:
 | 
			
		||||
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
 | 
			
		||||
 | 
			
		||||
## TODO
 | 
			
		||||
 | 
			
		||||
- Support row layer split for multiple card runs.
 | 
			
		||||
- NA
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user