mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	imatrix : use a single count for dense 3d tensors
This commit is contained in:
		@@ -112,13 +112,6 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
 | 
			
		||||
    const char * data = is_host ? (const char *) src1->data : m_src1_data.data();
 | 
			
		||||
    GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
 | 
			
		||||
 | 
			
		||||
    // TODO: 4d? (is that even used in practice?)
 | 
			
		||||
    // the extra dimension would need to be stored somewhere to be reflected in the imatrix file
 | 
			
		||||
    if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) {
 | 
			
		||||
        LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str());
 | 
			
		||||
        GGML_ASSERT(false);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // this has been adapted to the new format of storing merged experts in a single 3d tensor
 | 
			
		||||
    // ref: https://github.com/ggml-org/llama.cpp/pull/6387
 | 
			
		||||
    if (t->op == GGML_OP_MUL_MAT_ID) {
 | 
			
		||||
@@ -134,6 +127,13 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
 | 
			
		||||
 | 
			
		||||
        GGML_ASSERT(ids->ne[1] == src1->ne[2]);
 | 
			
		||||
 | 
			
		||||
        // TODO: 4d? (is that even used in practice?)
 | 
			
		||||
        // the extra dimension would need to be stored somewhere to be reflected in the imatrix file
 | 
			
		||||
        if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) {
 | 
			
		||||
            LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str());
 | 
			
		||||
            GGML_ASSERT(false);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        m_ids.resize(ggml_nbytes(ids));
 | 
			
		||||
        ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
 | 
			
		||||
 | 
			
		||||
@@ -199,19 +199,33 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
 | 
			
		||||
        auto & e = m_stats[wname];
 | 
			
		||||
        const int64_t n_mat = src1->ne[2] * src1->ne[3];
 | 
			
		||||
 | 
			
		||||
        // use a single count per dense tensor
 | 
			
		||||
        if ((int64_t) e.counts.size() == n_mat) {
 | 
			
		||||
            bool all_equal = true;
 | 
			
		||||
            for (size_t i = 1; i < e.counts.size(); ++i) {
 | 
			
		||||
                if (e.counts[0] != e.counts[i]) {
 | 
			
		||||
                    all_equal = false;
 | 
			
		||||
                    break;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            if (all_equal) {
 | 
			
		||||
                e.counts.resize(1);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        if (e.values.empty()) {
 | 
			
		||||
            e.values.resize(src1->ne[0] * n_mat, 0);
 | 
			
		||||
            e.counts.resize(n_mat, 0);
 | 
			
		||||
            e.counts.resize(1, 0);
 | 
			
		||||
        }
 | 
			
		||||
        else if (e.values.size() != (size_t)(src1->ne[0] * n_mat)) {
 | 
			
		||||
            LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0] * n_mat));
 | 
			
		||||
            exit(1); //GGML_ABORT("fatal error");
 | 
			
		||||
        }
 | 
			
		||||
        else if (e.counts.size() != (size_t)n_mat) {
 | 
			
		||||
            LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_mat);
 | 
			
		||||
        else if (e.counts.size() != 1) {
 | 
			
		||||
            LOG_ERR("%s: inconsistent matrix count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), 1);
 | 
			
		||||
            exit(1); //GGML_ABORT("fatal error");
 | 
			
		||||
        }
 | 
			
		||||
        LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->ne[2], (int)src1->type);
 | 
			
		||||
 | 
			
		||||
        for (int64_t i3 = 0; i3 < src1->ne[3]; ++i3) {
 | 
			
		||||
            for (int64_t i2 = 0; i2 < src1->ne[2]; ++i2) {
 | 
			
		||||
                const int64_t mat_id = i3 * src1->ne[2] + i2;
 | 
			
		||||
@@ -219,7 +233,6 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
 | 
			
		||||
 | 
			
		||||
                for (int64_t row = 0; row < src1->ne[1]; ++row) {
 | 
			
		||||
                    const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->ne[3]);
 | 
			
		||||
                    e.counts[mat_id]++;
 | 
			
		||||
                    for (int64_t j = 0; j < src1->ne[0]; ++j) {
 | 
			
		||||
                        e.values[mat_start + j] += x[j] * x[j];
 | 
			
		||||
                        if (!std::isfinite((float)e.values[j])) {
 | 
			
		||||
@@ -228,7 +241,10 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                const int32_t n_chunk = e.counts[mat_id] / chunk_size;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        e.counts[0] += src1->ne[1];
 | 
			
		||||
        const int32_t n_chunk = e.counts[0] / chunk_size;
 | 
			
		||||
        if (n_chunk > m_last_chunk) {
 | 
			
		||||
            const int32_t chunk_step = n_chunk - m_last_chunk;
 | 
			
		||||
            m_last_chunk = n_chunk;
 | 
			
		||||
@@ -240,8 +256,6 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user