CUDA: fix numerical issues in tile FA kernel (#16540)

This commit is contained in:
Johannes Gäßler
2025-10-13 16:29:45 +02:00
committed by GitHub
parent 01d2bdc2bc
commit 7049736b2d

View File

@@ -540,10 +540,12 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] = logit_softcap * tanhf(KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0]);
}
KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] += (ncols2 > 1 || mask) && (!oob_check || i_KQ < k_VKQ_sup) ?
slope*__half2float(mask[j*stride_mask + k_VKQ_0 + i_KQ]) : 0.0f;
if (!oob_check || i_KQ < k_VKQ_sup) {
KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] += (ncols2 > 1 || mask) ?
slope*__half2float(mask[j*stride_mask + k_VKQ_0 + i_KQ]) : 0.0f;
KQ_max_new[jc0] = fmaxf(KQ_max_new[jc0], KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0]);
KQ_max_new[jc0] = fmaxf(KQ_max_new[jc0], KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0]);
}
}
KQ_max_new[jc0] = warp_reduce_max<warp_size>(KQ_max_new[jc0]);
@@ -581,10 +583,9 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
float KQ_sum_add = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < nbatch_fa; i0 += np*warp_size) {
const float val = expf(KQ_acc[(i0/(np*warp_size))*cpw + jc] - KQ_max[jc]);
if (!oob_check || i0 + (threadIdx.y % np)*warp_size + threadIdx.x < k_VKQ_sup) {
KQ_sum_add += val;
}
const float val = !oob_check || i0 + (threadIdx.y % np)*warp_size + threadIdx.x < k_VKQ_sup ?
expf(KQ_acc[(i0/(np*warp_size))*cpw + jc] - KQ_max[jc]) : 0.0f;
KQ_sum_add += val;
tmp[i0/(np*warp_size)][jc1] = val;
}
KQ_sum[jc] = KQ_sum[jc]*KQ_max_scale + KQ_sum_add;
@@ -975,26 +976,6 @@ static __global__ void flash_attn_tile(
}
}
if (gridDim.y == 1) {
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_sum_jc_inv = make_half2(1.0f/KQ_sum[jc0], 1.0f/KQ_sum[jc0]);
#pragma unroll
for (int i = 0; i < (DVp/2)/warp_size; ++i) {
VKQ[jc0*((DVp/2)/warp_size) + i] *= KQ_sum_jc_inv;
}
#else
const float KQ_sum_jc_inv = 1.0f/KQ_sum[jc0];
#pragma unroll
for (int i = 0; i < (DVp/2)/warp_size; ++i) {
VKQ[jc0*((DVp/2)/warp_size) + i].x *= KQ_sum_jc_inv;
VKQ[jc0*((DVp/2)/warp_size) + i].y *= KQ_sum_jc_inv;
}
#endif // FAST_FP16_AVAILABLE
}
}
// Write back results:
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
@@ -1007,6 +988,8 @@ static __global__ void flash_attn_tile(
return;
}
const float scale = gridDim.y == 1 ? 1.0f/KQ_sum[jc0] : 1.0f;
const int j_dst_unrolled = ((sequence*ne01 + col_Q_0 + j)*ne02 + head0 + c)*gridDim.y + blockIdx.y;
#ifdef FAST_FP16_AVAILABLE
@@ -1017,6 +1000,8 @@ static __global__ void flash_attn_tile(
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
tmp[i1] = __half22float2(VKQ[jc0*((DVp/2)/warp_size) + i0/warp_size + i1]);
tmp[i1].x *= scale;
tmp[i1].y *= scale;
}
if (i0 + warp_size*cpy_ne_D <= DV/2 || i0 + threadIdx.x*cpy_ne_D < DV/2) {
ggml_cuda_memcpy_1<sizeof(tmp)>(&dst[j_dst_unrolled*DV + 2*i0 + threadIdx.x*(2*cpy_ne_D)], tmp);
@@ -1027,6 +1012,11 @@ static __global__ void flash_attn_tile(
#pragma unroll
for (int i0 = 0; i0 < DVp; i0 += warp_size*cpy_ne_D) {
if (i0 + warp_size*cpy_ne_D <= DV || i0 + threadIdx.x*cpy_ne_D < DV) {
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D/2; ++i1) {
VKQ[jc0*((DVp/2)/warp_size) + i0/(2*warp_size) + i1].x *= scale;
VKQ[jc0*((DVp/2)/warp_size) + i0/(2*warp_size) + i1].y *= scale;
}
ggml_cuda_memcpy_1<cpy_ne_D*4>(
&dst[j_dst_unrolled*DV + i0 + threadIdx.x*cpy_ne_D],
&VKQ[jc0*((DVp/2)/warp_size) + i0/(2*warp_size)]);