mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llama : refactor internal quantization functions (#5830)
This commit is contained in:
		
							
								
								
									
										81
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										81
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -10836,7 +10836,7 @@ struct quantize_state_internal { | ||||
|         {} | ||||
| }; | ||||
|  | ||||
| static void llama_convert_tensor_internal( | ||||
| static void llama_tensor_dequantize_internal( | ||||
|     struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers, | ||||
|     const size_t nelements, const int nthread | ||||
| ) { | ||||
| @@ -11177,6 +11177,46 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty | ||||
|     return new_type; | ||||
| } | ||||
|  | ||||
| static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, int64_t * hist_cur, const float * imatrix, std::vector<std::thread> & workers, const int nthread) { | ||||
|     std::mutex mutex; | ||||
|     int counter = 0; | ||||
|     size_t new_size = 0; | ||||
|     if (nthread < 2) { | ||||
|         // single-thread | ||||
|         return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur, imatrix); | ||||
|     } | ||||
|     auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size, | ||||
|             nrows, n_per_row, imatrix]() { | ||||
|         std::array<int64_t, 1 << 4> local_hist = {}; | ||||
|         const int nrows_per_chunk = chunk_size / n_per_row; | ||||
|         size_t local_size = 0; | ||||
|         while (true) { | ||||
|             std::unique_lock<std::mutex> lock(mutex); | ||||
|             int first_row = counter; counter += nrows_per_chunk; | ||||
|             if (first_row >= nrows) { | ||||
|                 if (local_size > 0) { | ||||
|                     for (int j=0; j<int(local_hist.size()); ++j) { | ||||
|                         hist_cur[j] += local_hist[j]; | ||||
|                     } | ||||
|                     new_size += local_size; | ||||
|                 } | ||||
|                 break; | ||||
|             } | ||||
|             lock.unlock(); | ||||
|             const int this_nrow = std::min(nrows - first_row, nrows_per_chunk); | ||||
|             local_size += ggml_quantize_chunk(new_type, f32_data, new_data, | ||||
|                     first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix); | ||||
|         } | ||||
|     }; | ||||
|     for (int it = 0; it < nthread - 1; ++it) { | ||||
|         workers.emplace_back(compute); | ||||
|     } | ||||
|     compute(); | ||||
|     for (auto & w : workers) { w.join(); } | ||||
|     workers.clear(); | ||||
|     return new_size; | ||||
| } | ||||
|  | ||||
| static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { | ||||
|     ggml_type quantized_type; | ||||
|     llama_ftype ftype = params->ftype; | ||||
| @@ -11289,7 +11329,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s | ||||
|  | ||||
|     std::vector<std::thread> workers; | ||||
|     workers.reserve(nthread); | ||||
|     std::mutex mutex; | ||||
|  | ||||
|     int idx = 0; | ||||
|  | ||||
| @@ -11403,7 +11442,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s | ||||
|             } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { | ||||
|                 throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); | ||||
|             } else { | ||||
|                 llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread); | ||||
|                 llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread); | ||||
|                 f32_data = (float *) f32_conv_buf.data(); | ||||
|             } | ||||
|  | ||||
| @@ -11424,41 +11463,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s | ||||
|  | ||||
|             const int nchunk = (nelements + chunk_size - 1)/chunk_size; | ||||
|             const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; | ||||
|             if (nthread_use < 2) { | ||||
|                 new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix); | ||||
|             } else { | ||||
|                 int counter = 0; | ||||
|                 new_size = 0; | ||||
|                 auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size, | ||||
|                      nrows, n_per_row, imatrix]() { | ||||
|                     std::array<int64_t, 1 << 4> local_hist = {}; | ||||
|                     const int nrows_per_chunk = chunk_size / n_per_row; | ||||
|                     size_t local_size = 0; | ||||
|                     while (true) { | ||||
|                         std::unique_lock<std::mutex> lock(mutex); | ||||
|                         int first_row = counter; counter += nrows_per_chunk; | ||||
|                         if (first_row >= nrows) { | ||||
|                             if (local_size > 0) { | ||||
|                                 for (int j=0; j<int(local_hist.size()); ++j) { | ||||
|                                     hist_cur[j] += local_hist[j]; | ||||
|                                 } | ||||
|                                 new_size += local_size; | ||||
|                             } | ||||
|                             break; | ||||
|                         } | ||||
|                         lock.unlock(); | ||||
|                         const int this_nrow = std::min(nrows - first_row, nrows_per_chunk); | ||||
|                         local_size += ggml_quantize_chunk(new_type, f32_data, new_data, | ||||
|                                 first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix); | ||||
|                     } | ||||
|                 }; | ||||
|                 for (int it = 0; it < nthread_use - 1; ++it) { | ||||
|                     workers.emplace_back(compute); | ||||
|                 } | ||||
|                 compute(); | ||||
|                 for (auto & w : workers) { w.join(); } | ||||
|                 workers.clear(); | ||||
|             } | ||||
|             new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, hist_cur.data(), imatrix, workers, nthread_use); | ||||
|  | ||||
|             LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); | ||||
|             int64_t tot_count = 0; | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Xuan Son Nguyen
					Xuan Son Nguyen