mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-08 10:07:01 +00:00
model: add Janus Pro for image understanding (#16906)
* Add support for Janus Pro * Update gguf-py/gguf/tensor_mapping.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update gguf-py/gguf/tensor_mapping.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Address reviewer suggestions Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Add JANUS_PRO constant * Update clip model handling Co-authored-by: Xuan-Son Nguyen <son@huggingface.co> * Update tools/mtmd/clip.cpp Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com> * Refactor JANUS_PRO handling in clip.cpp Co-authored-by: Xuan-Son Nguyen <son@huggingface.co> * Update tools/mtmd/clip.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * em whitespace --------- Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> Co-authored-by: Xuan-Son Nguyen <son@huggingface.co> Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
This commit is contained in:
@@ -9802,6 +9802,113 @@ class CogVLMModel(LlamaModel):
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("JanusForConditionalGeneration")
|
||||
class JanusProModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# Skip vision, aligner, and generation tensors
|
||||
skip_prefixes = (
|
||||
'model.vision_model.',
|
||||
'model.aligner.',
|
||||
'model.vqmodel.',
|
||||
'model.generation_embeddings.',
|
||||
'model.generation_aligner.',
|
||||
'model.generation_head.',
|
||||
)
|
||||
if name.startswith(skip_prefixes):
|
||||
return []
|
||||
|
||||
if name.startswith('model.language_model.'):
|
||||
name = name.replace('model.language_model.', 'model.')
|
||||
elif name.startswith('language_model.'):
|
||||
name = name.replace('language_model.', '')
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("JanusForConditionalGeneration")
|
||||
class JanusProVisionModel(MmprojModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
assert self.hparams_vision is not None
|
||||
if "intermediate_size" not in self.hparams_vision:
|
||||
mlp_ratio = self.hparams_vision.get("mlp_ratio")
|
||||
hidden_size = self.hparams_vision.get("hidden_size")
|
||||
if mlp_ratio is not None and hidden_size is not None:
|
||||
self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
assert self.hparams_vision is not None
|
||||
|
||||
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
|
||||
|
||||
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
|
||||
|
||||
hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
|
||||
if hidden_act == "gelu":
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
elif hidden_act == "silu":
|
||||
self.gguf_writer.add_vision_use_silu(True)
|
||||
|
||||
def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
|
||||
"""Map aligner tensors to projector format"""
|
||||
suffix = ".bias" if name.endswith(".bias") else ".weight"
|
||||
|
||||
if name.startswith("model.aligner."):
|
||||
local_name = name[len("model.aligner."):]
|
||||
elif name.startswith("aligner."):
|
||||
local_name = name[len("aligner."):]
|
||||
else:
|
||||
raise ValueError(f"Unsupported Janus aligner prefix: {name}")
|
||||
|
||||
if local_name.startswith("fc1."):
|
||||
mm_index = 0
|
||||
elif local_name.startswith("hidden_layers."):
|
||||
parts = local_name.split(".", 2)
|
||||
if len(parts) < 3:
|
||||
raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
|
||||
mm_index = int(parts[1]) + 1
|
||||
else:
|
||||
raise ValueError(f"Unsupported Janus aligner tensor: {name}")
|
||||
|
||||
tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
|
||||
return [(tensor_name, data_torch)]
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
# Skip language model tensors as they will be handled by `JanusProModel`
|
||||
if name.startswith(('model.language_model.', 'language_model.')):
|
||||
return []
|
||||
|
||||
# Skip generation-related components
|
||||
skip_generation_prefixes = (
|
||||
'model.vqmodel.',
|
||||
'vqmodel.',
|
||||
'model.generation_embeddings.',
|
||||
'generation_embeddings.',
|
||||
'model.generation_aligner.',
|
||||
'generation_aligner.',
|
||||
'model.generation_head.',
|
||||
'generation_head.',
|
||||
)
|
||||
if name.startswith(skip_generation_prefixes):
|
||||
return []
|
||||
|
||||
# Handle aligner tensors
|
||||
if name.startswith(('model.aligner.', 'aligner.')):
|
||||
return list(self._map_aligner_tensor(data_torch, name))
|
||||
|
||||
# Handle vision tensors
|
||||
if name.startswith(('model.vision_model.', 'vision_model.')):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
return []
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
||||
@@ -3186,6 +3186,7 @@ class VisionProjectorType:
|
||||
KIMIVL = "kimivl"
|
||||
LIGHTONOCR = "lightonocr"
|
||||
COGVLM = "cogvlm"
|
||||
JANUS_PRO = "janus_pro"
|
||||
|
||||
|
||||
# Items here are (block size, type size)
|
||||
|
||||
@@ -1183,6 +1183,7 @@ class TensorNameMap:
|
||||
"model.mm_projector.mlp.mlp.{bid}",
|
||||
"vision_model.vision_adapter.mlp.fc{bid}", # llama 4
|
||||
"mlp1.{bid}", # InternVL
|
||||
"model.aligner.fc1.hidden_layers.{bid}", # Janus Pro
|
||||
),
|
||||
|
||||
MODEL_TENSOR.V_MMPROJ_PEG: (
|
||||
@@ -1291,6 +1292,7 @@ class TensorNameMap:
|
||||
"model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
|
||||
"vpm.encoder.layers.{bid}.self_attn.out_proj",
|
||||
"model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
|
||||
"model.vision_model.encoder.layers.{bid}.self_attn.projection_layer", # Janus Pro
|
||||
"vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
|
||||
"vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
|
||||
"vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
|
||||
|
||||
@@ -155,6 +155,7 @@ enum projector_type {
|
||||
PROJECTOR_TYPE_KIMIVL,
|
||||
PROJECTOR_TYPE_LIGHTONOCR,
|
||||
PROJECTOR_TYPE_COGVLM,
|
||||
PROJECTOR_TYPE_JANUS_PRO,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
@@ -180,6 +181,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
{ PROJECTOR_TYPE_KIMIVL, "kimivl"},
|
||||
{ PROJECTOR_TYPE_LIGHTONOCR,"lightonocr"},
|
||||
{ PROJECTOR_TYPE_COGVLM, "cogvlm"},
|
||||
{ PROJECTOR_TYPE_JANUS_PRO, "janus_pro"},
|
||||
};
|
||||
|
||||
static projector_type clip_projector_type_from_string(const std::string & str) {
|
||||
|
||||
@@ -588,6 +588,15 @@ struct clip_graph {
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
|
||||
cur = ggml_add(ctx0, cur, model.mm_2_b);
|
||||
|
||||
} else if (ctx->proj_type() == PROJECTOR_TYPE_JANUS_PRO) {
|
||||
cur = build_ffn(cur,
|
||||
model.mm_0_w, model.mm_0_b,
|
||||
nullptr, nullptr,
|
||||
model.mm_1_w, model.mm_1_b,
|
||||
hparams.ffn_op,
|
||||
-1);
|
||||
|
||||
} else {
|
||||
GGML_ABORT("SigLIP: Unsupported projector type");
|
||||
}
|
||||
@@ -1729,7 +1738,6 @@ struct clip_graph {
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
// whisper encoder with custom projector
|
||||
ggml_cgraph * build_whisper_enc() {
|
||||
const int n_frames = img.nx;
|
||||
@@ -2457,6 +2465,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
{
|
||||
res = graph.build_kimivl();
|
||||
} break;
|
||||
case PROJECTOR_TYPE_JANUS_PRO:
|
||||
{
|
||||
res = graph.build_siglip();
|
||||
} break;
|
||||
case PROJECTOR_TYPE_COGVLM:
|
||||
{
|
||||
res = graph.build_cogvlm();
|
||||
@@ -3158,6 +3170,13 @@ struct clip_model_loader {
|
||||
model.mm_boi = get_tensor(TN_TOK_BOI);
|
||||
model.mm_eoi = get_tensor(TN_TOK_EOI);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_JANUS_PRO:
|
||||
{
|
||||
model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
|
||||
model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
|
||||
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
|
||||
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
|
||||
} break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown projector type");
|
||||
}
|
||||
@@ -4219,6 +4238,18 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
||||
res_imgs->entries.push_back(std::move(img_f32));
|
||||
} break;
|
||||
|
||||
case PROJECTOR_TYPE_JANUS_PRO:
|
||||
{
|
||||
// Janus Pro preprocessing: pad to square with gray(127), resize to 384x384
|
||||
const std::array<uint8_t, 3> pad_color = {127, 127, 127};
|
||||
clip_image_u8 resized_image;
|
||||
int sz = params.image_size;
|
||||
img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
|
||||
clip_image_f32_ptr img_f32(clip_image_f32_init());
|
||||
normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
|
||||
res_imgs->entries.push_back(std::move(img_f32));
|
||||
} break;
|
||||
|
||||
case PROJECTOR_TYPE_PIXTRAL:
|
||||
case PROJECTOR_TYPE_LIGHTONOCR:
|
||||
{
|
||||
@@ -4395,6 +4426,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
|
||||
switch (proj) {
|
||||
case PROJECTOR_TYPE_MLP:
|
||||
case PROJECTOR_TYPE_MLP_NORM:
|
||||
case PROJECTOR_TYPE_JANUS_PRO:
|
||||
{
|
||||
// do nothing
|
||||
} break;
|
||||
@@ -4905,6 +4937,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
case PROJECTOR_TYPE_ULTRAVOX:
|
||||
case PROJECTOR_TYPE_LFM2:
|
||||
case PROJECTOR_TYPE_VOXTRAL:
|
||||
case PROJECTOR_TYPE_JANUS_PRO:
|
||||
case PROJECTOR_TYPE_COGVLM:
|
||||
{
|
||||
// do nothing
|
||||
@@ -4993,6 +5026,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
||||
return ctx->model.mm_model_mlp_3_w->ne[1];
|
||||
case PROJECTOR_TYPE_QWEN2VL:
|
||||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_JANUS_PRO:
|
||||
return ctx->model.mm_1_b->ne[0];
|
||||
case PROJECTOR_TYPE_QWEN3VL:
|
||||
// main path + deepstack paths
|
||||
|
||||
Reference in New Issue
Block a user