mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-07 09:57:00 +00:00
cleaning unused hparams
This commit is contained in:
@@ -1552,7 +1552,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
case LLM_ARCH_FALCON_H1:
|
||||
{
|
||||
// Common parameters
|
||||
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.vocab_size);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
// SSM parameters
|
||||
@@ -1564,10 +1563,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
|
||||
ml.get_key(LLM_KV_SSM_HEAD_DIM, hparams.ssm_head_dim);
|
||||
|
||||
// Falcon-H1 parameters
|
||||
ml.get_key(LLM_KV_ATTN_HEAD_DIM, hparams.attn_head_dim);
|
||||
ml.get_key(LLM_KV_FALCON_H1_MAMBA_RMS_NORM, hparams.mamba_rms_norm);
|
||||
|
||||
std::fill(hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), true);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
@@ -4514,31 +4509,29 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
{
|
||||
// Common
|
||||
const int64_t hidden_size = hparams.n_embd; // hidden_size
|
||||
const int64_t vocab_size = hparams.vocab_size; // vocab_size
|
||||
|
||||
// mamba2 Mixer SSM params
|
||||
const int64_t ssm_conv_kernel_size = hparams.ssm_d_conv; // ssm_conv_kernel_size
|
||||
const int64_t ssm_n_groups = hparams.ssm_n_group; // ssm_n_groups
|
||||
const int64_t ssm_state_size = hparams.ssm_d_state; // ssm_state_size
|
||||
const int64_t ssm_intermediate_size = hparams.ssm_mamba_d_ssm > 0 ? hparams.ssm_mamba_d_ssm : int(hparams.mamba_expand * hidden_size); // TODO expand
|
||||
const int64_t ssm_mamba_d_ssm = hparams.ssm_mamba_d_ssm;
|
||||
const int64_t ssm_num_heads = hparams.ssm_dt_rank; // ssm_num_heads
|
||||
const int64_t ssm_conv_dim = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
|
||||
const int64_t ssm_projection_size = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;
|
||||
const int64_t ssm_conv_dim = ssm_mamba_d_ssm + 2 * ssm_n_groups * ssm_state_size;
|
||||
const int64_t ssm_projection_size = ssm_mamba_d_ssm + ssm_conv_dim + ssm_num_heads;
|
||||
|
||||
// attn params
|
||||
const int64_t attn_num_attention_head = hparams.n_head(0); // rename to: attn_num_attention_head
|
||||
const int64_t attn_num_key_value_head = hparams.n_head_kv(0);
|
||||
const int64_t attn_head_dim = hparams.attn_head_dim > 0 ? hparams.attn_head_dim : hidden_size / attn_num_attention_head;
|
||||
|
||||
// ffn params
|
||||
const int64_t ffn_intermediate_size = hparams.n_ff(0);
|
||||
|
||||
// embeddings
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, vocab_size}, 0);
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, 0);
|
||||
|
||||
// output
|
||||
{
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, vocab_size}, TENSOR_NOT_REQUIRED);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
final_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {hidden_size}, 0);
|
||||
}
|
||||
|
||||
@@ -4558,21 +4551,19 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, ssm_num_heads}, 0);
|
||||
layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, ssm_num_heads}, 0);
|
||||
// ssm_norm
|
||||
if (hparams.mamba_rms_norm == true) {
|
||||
layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_intermediate_size / ssm_n_groups, ssm_n_groups}, 0);
|
||||
}
|
||||
layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_mamba_d_ssm / ssm_n_groups, ssm_n_groups}, 0);
|
||||
// out_proj
|
||||
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_intermediate_size, hidden_size}, 0);
|
||||
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_mamba_d_ssm, hidden_size}, 0);
|
||||
|
||||
/*ATTENTION LAYERS*/
|
||||
// attention layers (with optional bias)
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {hidden_size, attn_head_dim * attn_num_attention_head}, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {hidden_size, attn_num_key_value_head * attn_head_dim}, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {hidden_size, attn_num_key_value_head * attn_head_dim}, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {attn_head_dim * attn_num_attention_head, hidden_size}, 0);
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {hidden_size, n_embd_head_k * attn_num_attention_head}, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_k}, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_v}, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * attn_num_attention_head, hidden_size}, 0);
|
||||
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {hidden_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {attn_num_key_value_head * attn_head_dim}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {attn_num_key_value_head * attn_head_dim}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {attn_num_key_value_head * n_embd_head_k}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {attn_num_key_value_head * n_embd_head_v}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {hidden_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {hidden_size}, 0);
|
||||
|
||||
@@ -14717,7 +14708,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
||||
inpSA = ggml_add(ctx0, cur, inpSA);
|
||||
cb(cur, "layer_out", il);
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@@ -14882,7 +14873,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
||||
y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
|
||||
|
||||
// grouped RMS norm
|
||||
if (hparams.mamba_rms_norm){
|
||||
if (model.layers[il].ssm_norm) {
|
||||
y = ggml_reshape_4d(ctx0, y, d_ssm / n_group, n_group, n_seq_tokens, n_seqs);
|
||||
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user